期刊文献+

基于混合信息的粒子群优化算法

Particle Swarm Optimization Arithmetic Based on Hybrid Information
下载PDF
导出
摘要 针对非线性优化问题讨论一种基于混合信息的粒子群优化算法,该算法考虑了最优个体和最差个体获取信息,结合自适应变异算子确定下一步搜索方向。自适应变异依据适应值大小调整速度惯性因子、改变搜索方向。仿真实验结果表明,新的算法收敛,具有很高的搜索效率和求解精度。 A new Particle Swarm Optimization(PSO) arithmetic based on hybrid information is presented, which covers the advantages to get available information from the best individual and the worst individual. Adaptive mutation arithmetic is also used to adjust the searching direction of nonlinear function problem, in which the speed weight ratio is mutated according to fitness of the objective function. Simulation results show that the nonlinear function problems can be solved with greater searching efficiency and better solution accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第7期176-177,183,共3页 Computer Engineering
基金 湖南省自然科学基金资助项目(06JJ5112) 湘潭大学学校跨学科交叉基金资助项目(05IND04)
关键词 混合信息 粒子群优化 自适应变异 非线性优化 hybrid information Particle Swarm Optimization(PSO) adaptive mutation nonlinear optimization
  • 相关文献

参考文献6

  • 1Yang Chunming, Simon D. A New Particle Swarm Optimization Technique[C].Proceedings of the 18th international Conference on Systems Engineering. Washington, D. C., USA: IEEE Computer Society, 2005. 被引量:1
  • 2刘良兵,吴方才,黄樟灿.基于立队竞争的演化算法[J].武汉大学学报(理学版),2003,49(3):323-326. 被引量:8
  • 3Kennedy J, Eberhart R. Particle Swarm Opfimization[C].Proc. of IEEE International Conference on Neural Networks. Perth, WA, Australia: [s. n.], 1995: 1942-1948. 被引量:1
  • 4Wang Fang, Qiu Yuhui. Empirical Study of Hybrid Particle Swarm Optimizers with the Simplex Method.Operator[C].Proceedirigs of the 5th International Conference on Intelligent Systems Design and Application. Chongqing, China: [s. n.], 2005. 被引量:1
  • 5Zavala A E, Aguirre A H, Particle Evolutionary Swarm Optimization Algorithm (PESO)[C].Proceedings of the 6th Mexican International Conference on Computer Science. Washington, D. C., USA: IEEE Computer Society, 2005. 被引量:1
  • 6Monson C K, Seppi K D. A New Approach to Particle Motion in Swarm Optimization[EB/OL]. (2006-03-30). http://www. citeseer ist. psu.edu/monson04kalman.html. 被引量:1

二级参考文献8

  • 1Pan Z J, Kang L S, Chen Y P. Evolutionary Computation[M]. Beijing: Tsinghua University Press, 1998. 被引量:1
  • 2Kreinovich V, Quintana C, Fuentes O. Genetic Algorithms What Fitness Scaling is Optimal[J]. Cybern and Systems, 1993,24 ( 1 ) : 9-26. 被引量:1
  • 3Baeck T , Hoffmeister F . Extended Selection Mechanisms in Genetic Algorithms[A]. Belew R Booker,ed. Proc 4th Int Conf on Genetic Algorithms[C]. Los Altos: Morgan Kaufmann, 1991. 被引量:1
  • 4Maza M D L,Tidor B. An Analysis of Selection Procedures with Particular Attention Paid to Proportional and Boltzmann Selection[A]. Forrest S ed. Proc. 5th Int Con f, on Genetic Algorithms [C]. Sen Mateo:Morgan Kaufmann,1993. 被引量:1
  • 5Baker J E.Adaptive Selection Methods for Genetic Algorithms[A]. Grefenstette J J ed. Proc. 1st Int Conf. on Genetic Algorithms [C]. Hillsdale, NJ:Lawrence Earlbaum Associates, 1985, 110-111. 被引量:1
  • 6Davidor Y, Schwefel H P. An Introduction to Adaptive Optimization Algorithms Based on Principles of Natural Evolution[A]. Souaeek B ed. Dynamic, Genetic and Chaotic Programming[C]. New York:John Wiley & Sons, 1992, 138-202. 被引量:1
  • 7Schwefel H P. Numerical Optimization of Computer Models[M]. Chichester, UK: John Wiley, 1981. 被引量:1
  • 8Goldberg D E. A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing [J]. Complex Systems, 1990, 4(4) :445-460. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部