期刊文献+

基于用户信任和张量分解的社会网络推荐 被引量:37

Social Recommendations Based on User Trust and Tensor Factorization
下载PDF
导出
摘要 社会化网络中的推荐系统可以在浩瀚的数据海洋中给用户推荐相关的信息.社会网络中用户之间的信任关系已经被用于推荐算法中,但是目前的基于信任的推荐算法都是单一的信任模型.提出了一种基于主题的张量分解的用户信任推荐算法,用来挖掘用户在不同的物品选取的时候对不同朋友的信任程度.由于社交网络更新速度快,鉴于目前的基于信任算法大都是静态算法,提出了一种增量更新的张量分解算法用于用户信任的推荐算法.实验结果表明:所提出的基于主题的用户信任推荐算法比现有算法具有更好的准确性,并且增量更新的推荐算法可以大幅度提高推荐算法在训练数据增加后的模型训练效率,适合更新速度快的社会化网络中的推荐任务. In social networks, recommender systems can help users to deal with information overload and provide personalized recommendations to them. The trust relationship of users is used in the social networks' recommender systems. But the state-of-art algorithms only use the single trust relationship which cannot capture the trust to user's friends when looking for different items. This paper proposes a topic-based trust recommendation algorithm using tensor factorization model. As the social information changes rapidly, the state-of-art algorithms often need redo factorization. To address the issue, the paper also presents an effective incremental method to adaptively update its previous factorized components rather than re-computing them on the whole dataset when the data changes. Experiments show that the proposed method can achieve better performance and the incremental method is suitable for the rapid changes in the social networks.
出处 《软件学报》 EI CSCD 北大核心 2014年第12期2852-2864,共13页 Journal of Software
基金 国家重点基础研究发展计划(973)(2014CB340402 2012CB316205) 国家高技术研究发展计划(863)(2014AA015 204) 国家自然科学基金(61272137 61033010 61202114) 国家社会科学基金(12&ZD220)
关键词 推荐系统 社会网络 信任 张量分解 增量更新 recommendation systems social network trust tensor factorization incremental update
  • 相关文献

参考文献19

  • 1Gilbert E, Karahalios K. Predicting tie strength with social media. In: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. New York: ACM Press, 2009. 211-220. [doi: 10.1145/1518701.1518736]. 被引量:1
  • 2Massa P, Avesani P. Trust-Aware bootstrapping of recommender systems. In: Proc. of the 2007 ACM Conf. on Recommender Systems. New York: ACM Press, 2006. 29-33. [doi:. 被引量:1
  • 3Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2009. 397-406. [doi: 10.1145/ 1557019.1557067]. 被引量:1
  • 4O'Brien GW. Information management tools for updating an SVD-encoded indexing scheme [MS. Thesis]. Knoxville: University of Tennessee, 1994.10.1145/1297231.1297235]. 被引量:1
  • 5王立才,孟祥武,张玉洁.上下文感知推荐系统.软件学报,2012,23(1):1-20.http://www.jos.org.cn/1000—9825/4100.htm. 被引量:1
  • 6Singh S, Bawa S. A privacy, trust and policy based authorization framework for services in distributed environments. Int'l Journal of Computer Science, 2007,2(2):85-92. 被引量:1
  • 7Granovetter M. The strength of weak ties. American Journal of Sociology, 1973,78(6):1360-1380. [doi: 10.2307/202051]. 被引量:1
  • 8Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978]. 被引量:1
  • 9De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 2000,21 (4): 1253-1278. [doi: 10.1137/S0895479896305696]. 被引量:1
  • 10Harshman RA. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 1970,16:1-84. 被引量:1

二级参考文献6

共引文献178

同被引文献245

引证文献37

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部