期刊文献+

面向异构情境化推荐服务的关键情境特征识别 被引量:5

Identification of Key Context Features for Heterogeneous Contextual Recommendation Service
原文传递
导出
摘要 文章提出一种面向异构情境化推荐服务的关键情境特征识别方法,方法具有通用性和可扩展性,能够整合来自不同情境化推荐服务的异构情境关联数据集,能够基于情境对用户偏好影响的相似性实现用户细分,识别出显著影响目标客户群体总体偏好的情境特征。 This paper proposes a key context features identification method for heterogeneous contextual recommendation service,which has generality and expansibility. The method integrates the heterogeneous contextual data set from different contextual recommendation services,realizes the customer segmentation based on the similarity of context influence on user preference,as well as identifies the context features that distinctly influence the general preference of target groups.
出处 《情报理论与实践》 CSSCI 北大核心 2015年第1期104-109,共6页 Information Studies:Theory & Application
基金 教育部人文社会科学青年基金项目"移动虚拟社区的群推荐信息服务研究--以涌现知识和时空情境整合的视角"(项目编号:13YJC870009) 教育部人文社会科学青年基金项目"泛在信息环境下基于情境感知的自适应信息服务研究"(项目编号:11YJC870026) 教育部人文社会科学青年基金项目"危机事件的网络信息扩散规律与控制机理研究"(项目编号:10YJC630396)的成果 国家自然科学基金面上项目"24小时知识工厂的知识共享活动模型与服务支持系统研究"(项目编号:71171153)
关键词 情境特征识别 推荐服务 用户偏好 context features identification recommendation service user preference
  • 相关文献

参考文献17

  • 1胡慕海,蔡淑琴,张宇,谭婷婷.情境化信息推荐机制的研究[J].情报学报,2011,30(10):1053-1064. 被引量:21
  • 2ZHENG Y, BURKE R, MOBASHER B. Optimal feature selec- tion for context-aware recommendation using differential relaxa- tion [ EB/OL] . [ 2013-09-14 ] . http: //ceur-ws. org/Vol- 889/paperl. pdf. 被引量:1
  • 3ADOMAVICIUS G, TUZHILIN A. Recommendation and personalization : a survey [ C ]. 2008 ACM Conference on Recom- mendation Systems, Lausanne, 2008: 335-336. 被引量:1
  • 4蔡淑琴,胡慕海,叶波,马玉涛.情境化推荐中基于超图模式的用户偏好漂移识别研究[J].情报学报,2011,30(8):802-811. 被引量:7
  • 5PALMISANO C, TUZHILIN A, GORGOGLIONE M. Using context to improve predictive models of customers in personaliza- tion applications [ C ]. IEEE Transaction on Knowledge Data Engineer, 2008 : 1535-1549. 被引量:1
  • 6LIEBERMAN H, SELKER T. Out of context: computer sys- tems that adapt to, and learn from, context [ J ]. IBM Sys- tems Journal, 2000, 39 (34): 617-632. 被引量:1
  • 7DEY A K. Understanding and using context [ J ]. Personal and Ubiquitous Computing, 2001, 5 (1): 4-7. 被引量:1
  • 8LOHNA S. Identification and utilization of contextual features u- sing post-filtering in an e-commerce context-aware recommender system [D]. [S. l. ] : Gjbvik University College, 2010. 被引量:1
  • 9SHI Y, LARSON M, HANJALIC A. Mining contextual movie similarity with matrix factorization for context-aware recommen- dation [ J ]. ACM Transactions on Intelligent Systems and Technology, 2013, 4 (1) : 16-19. 被引量:1
  • 10ODI C A, TKALCIC M, et al. Impact of the context relevancy on ratings prediction in a movie-recommender system [ J ]. Au- tomatika Journal for Control, Measurement, Electronics, Com- puting and Communications, 2013, 55 (1) : 109-123. 被引量:1

二级参考文献69

  • 1周国韬,张林,付桂芳.初中生自我调节学习策略的运用与学业成就关系的研究[J].心理科学,2001,24(5):612-613. 被引量:64
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3Knrtz A J, Mostafa J. Topic detection and interest tracking in a dynamic online news source[ C ]//Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries. Washington DC ,2003 : 122-124. 被引量:1
  • 4Min S H, Hart I. Detection of the customer time-variant pattern for improving recommender systems [ J ]. Expert Systems with Applications ,2005,28 : 189-199. 被引量:1
  • 5Jackson J E. A User' s Guide to Principal Components [M]. New York: John Wiley & Sons Inc,1991. 被引量:1
  • 6Kohonen T. Self-Organization and Associated Memory [ M ]. New York : Springer-Verlag, 1988. 被引量:1
  • 7Han E H, Karypis G,Kumar V,et al. Clustering in a High- dimensional Space Using Hypergraph Models, TR-97-063 [ R ]. Minneapolis: Department of Computer Science, University of Minnesota, 1997. 被引量:1
  • 8Demir E, Aykanat C, Cambazoglu B. Clustering spatial networks for aggregate query processing: a hypergraph approach[ J]. Information Systems ,2008,33 ( 1 ) : 1-17. 被引量:1
  • 9Sankaranarayanan R, Adomavicius G. Incorporating contextual information in recommendation systems using a multidimensional approach [ J ]. ACM Transactions on Information Systems, 2005,11 ( 23 ) : 103-145. 被引量:1
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommendation systems: a survey of the state-of-the- art and possible extensions [ J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(6) : 734-749. 被引量:1

共引文献23

同被引文献43

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部