摘要
设D=multiply from i=1 to s p_i(s≥2),p_i=1(mod 6)(1≤i≤s)为不同的奇素数.关于Diophantine方程x^3-1=Dy^2的初等解法至今仍未解决.主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod 24)为奇素数.(q/13)=-1时,Diophantine方程x^3-1=13qy^2仅有整数解(x,y)=(1,0).
Let D = i=1Пspi(s≥2), pi≡ 1 ( mod 6) (i= 1,2, …, s ), pi ( i=1, 2,…, s ) be different odd primes. The primary solution of the Diophantine equation x^3-1=Dy^2 still remains unresolved. We use congruence, quadratic residue, some properties of the solutions to Pell equation and recurrent sequence, to prove that the Diophantine equation x^3- 1=13qy^2 only has integer solution(x,y)=( 1,0)when q be odd prime with q≡7(mod 24) and (q/13)=-1.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2015年第4期103-105,共3页
Journal of Nanjing Normal University(Natural Science Edition)
基金
云南省教育厅科研基金(2012C199
2014Y462)