摘要
设p,q是互异的奇素数,p≡q≡1(mod 6),本文主要利用递归序列、Pell方程的解的性质、Maple小程序等证明了丢番图方程组x-1=3pqu2,x2+x+1=3v2除开p=7,q=181有非平凡解(x,u,v)=(60 817,±4,±35 113)外,仅有平凡解(x,u,v)=(1,0,±1)。
Let p,q be different odd primes,p≡q≡1(mod 6). By using recurrent sequence, some properties of the solutionsto Pell equation and Maple formality to prove the system Diophantine equations x-1 = 3pqu^2 ,x^2+ x+ 1 = 3v^2 has only trivial solutions (x, u, v)= (1,0, ± 1) with the exception p = 7, q= 181 in which the system Diophantine equations x-1 = 3pqu^2, x^2+x+1 = 3v^2 have nontrivial solutions (x,u,v) = (60 817, ±4, ±35 113).
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期102-105,共4页
Journal of Chongqing Normal University:Natural Science
基金
云南省教育厅科研基金(No.2014Y462)
江苏省教育科学"十二五"规划课题项目(No.D201301083)
喀什师范学院校级重点课题(No.2507)
关键词
丢番图方程
PELL方程
整数解
递归序列
Diophantine equation
Pell equation
integer solution
recurrent sequence