摘要
利用同余式、递归序列、勒让德符号、Pell方程的解的性质证明了p≡19(mod 24)为奇素数,q=73,97,241,337,409,(pq)=-1时,丢番图方程x3+1=PQy2仅有整数解(x,y)=(-1,0).
In our report,congruence,recurrent sequence,Legendre symbol,and some properties of the solutions to Pell equation were used to prove that the Diophantine equation x3+ 1 = PQy2 only has integer solution( x,y) =( 1,0),when p is odd prime with p≡19( mod 24),q = 73,97,241,337,409,and(p/q) =- 1.
出处
《海南大学学报(自然科学版)》
CAS
2015年第3期204-207,共4页
Natural Science Journal of Hainan University
基金
云南省教育厅科学研究项目(2014Y462)
关键词
丢番图方程
整数解
同余
递归序列
勒让德符号
Diophantine equation
integer solution
congruence
recurrent sequence
Legendre symbol