期刊文献+

基于核极限学习机的模拟电路故障诊断研究 被引量:17

A Method of Fault Diagnosis for Analog Circuit Based on KELM
下载PDF
导出
摘要 核函数极限学习机有效地避免了极限学习机(ELM)模型固有的随机性和支持向量机(SVM)模型求解的复杂性,而且具有更快的学习速度和更好的泛化性能。因此,提出了基于核极限学习机的模拟电路故障诊断新方法,描述了电路故障特征的选取过程,建立了以核极限学习机为基础的模拟电路故障诊断模型。实验结果表明,该方法故障诊断准确率大于99%,性能优于支持向量机和极限学习机。 The KELM algorithm with the characteristic of fast learning speed and strong generalization is used to construct soft sensor models; this overcomes the randomization of ELM and the complexity solution process of SVM.So a new method for analog circuit fault diagnosis based on kernel extreme learning machine(KELM) algorithm is proposed in this paper. The method for extracting the fault signatures of the circuit under test is proposed and the analog circuit fault diagnosis model based on KELM is established. The simulation results and their analysis testify preliminarily that the proposed approach for analog circuit fault diagnosis achieves excellent performance,obtaining a fault diagnosis accuracy rate of greater than 99%.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第2期290-294,共5页 Journal of Northwestern Polytechnical University
基金 航空科学基金(2012ZD53051)资助
关键词 模拟电路 故障诊断 支持向量机 核函数 核极限学习机 analog circuits fault diagnosis kernel function KELM(Kernel extreme learning machine)
  • 相关文献

参考文献9

  • 1Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70( I/2/ 3) : 489-501. 被引量:1
  • 2Huang G B, Zhou H, Ding X, Zhang R. Extreme Learning Machine for Regression and Multi-Class Classification [ J ]. IEEE Trans on Systems Man and Cybernetics-Part B: Cybernetics, 2011, 42(11) : 513-529. 被引量:1
  • 3鲁昌华,汪涌,王玲飞.基于PCA和SVM的模拟电路故障诊断[J].电子测量与仪器学报,2008,22(3):64-68. 被引量:14
  • 4Deng W, Zheng Q, Zhang K. Reduced Kernel Extreme Learning Machine. Advances in Intelligent Systems and Computing, 2013, 226:63-69. 被引量:1
  • 5Huang G B, Wang D H, Lan Y. Extreme Learning Machines : A Survey [ J ]. International Journal of Machine Leaning and Cy- bernetics, 2011, 10(8): 107-122. 被引量:1
  • 6Zong W, Zhou H, Huang G, Lin Z. Face Recognition Based on Kemelized Extreme Learning Machine [ C]///Second Interna- tional Conference, AIS 2011, Burnaby, BC, Canada, 2011:263-272. 被引量:1
  • 7袁海英,陈光.模拟电路的可测性及故障诊断方法研究[J].电子测量与仪器学报,2006,20(5):17-20. 被引量:17
  • 8孙永奎,陈光,李辉.支持向量机在模拟电路故障诊断中应用[J].电子测量与仪器学报,2008,22(2):72-75. 被引量:20
  • 9Long Bing, Li Min, Wang Houjun, Tian Shulin. Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain Features [J]. Circuits, Systems, and Signal Processing, 2013, 32(6) : 2683-2706. 被引量:1

二级参考文献23

共引文献46

同被引文献143

引证文献17

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部