期刊文献+

基于混沌序列的SVM参数选择及其在笔迹鉴别中的应用 被引量:1

Selection of SVM parameters using chaotic series and its application in handwriting verification
下载PDF
导出
摘要 基于RBF核的支持向量机(SVM)模型选择取决于两个参数,即惩罚因子和核参数,为了寻找SVM参数的最优组合,利于笔迹鉴别图像的自动识别,提出了基于混沌序列的参数搜索算法以实现SVM模型参数的自动选择。从与网格法和双线性法进行的比较实验可以看出,基于混沌序列的SVM参数选取更简单,更易于实现,并使SVM具有更好的推广能力。在10人笔迹灰度图像库上分类识别实验结果表明,该方法不但可以提高分类识别率,而且显著减少了训练SVM的个数。 In order to find the optimization compound of Support Vector Machine (SVM) parameters, that is penalty factor and nuclear factor, and help to identify the handwriting image, a parameter searching algorithm based on chaotic sequence was proposed to determine the SVM parameters automatically. Compared with the grid search and two-line search, the proposed algorithm is much simpler and easier to be implemented, which makes SVM has better outreach capacity. Classification experiment on 10 people handwriting gray-scale images prove that the proposed algorithm has higher classification rate and significantly reduce the number of training SVM.
出处 《计算机应用》 CSCD 北大核心 2007年第8期1961-1963,共3页 journal of Computer Applications
关键词 支持向量机 混沌序列 参数选取 笔迹鉴别 Support Vector Machine (SVM) chaotic series parameters selection handwriting verification
  • 相关文献

参考文献8

  • 1CHAPELLE O,VAPNIK V,BOUSQUET O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1/3):131-159. 被引量:1
  • 2CHERKASSKY V,MA Y Q.A practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126. 被引量:1
  • 3KEETHI S,LIN C-J.Asymptotic behavior of support vector machines with Gaussian kernel[J].Neural Computation,2003,15(7):1667-1689. 被引量:1
  • 4FR(O)NHL ICH H,CHAPELLE O,SCH(O)LKOPF B.Feature selection for support vector machines by means of genetic algorithms[C]// Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'03),November 3-5,2003.[S.l.]:IEEE Computer Society,2003,142-148. 被引量:1
  • 5KEERTHIS S.Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J].IEEE Transactions on Neural Network,2002,13(5):1225-1229. 被引量:1
  • 6ZHANG H D,HE Y Y.Comparative study of chaotic neural networks with different models of chaotic noise[C]// Proceedings of First International Conference on Natural Computation (ICNC2005),LNCS 3610,Changsha,China.Berlin:Springer,2005:273-282. 被引量:1
  • 7朱勇,谭铁牛,王蕴红.基于笔迹的身份鉴别[J].自动化学报,2001,27(2):229-234. 被引量:34
  • 8WESTON J,WATKINS C.Multi-class support vector machines[R].Royal Holloway:University of London,Department of Computer Science,1998. 被引量:1

二级参考文献3

  • 1Said H E S,Proc 14th IAPR Int Conf Pattern Recognition,1998年,1761页 被引量:1
  • 2Peake G S,Proc BMVC'97 Essex UK,1997年,2卷,169页 被引量:1
  • 3Tan T N,Proc 11th IAPR Int Conf Pattern Recognition,1992年,607页 被引量:1

共引文献33

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部