期刊文献+

混沌优化的仓储害虫声音信号识别研究 被引量:2

Storedproducted Insects's Voice Signals Classification Based on the Chaos Optimization
下载PDF
导出
摘要 为了提高仓储物害虫声音信号的自动识别率,寻找支持向量机模型参数C和核宽度参数σ的最优组合,提出了基于混沌优化的支持向量机模型参数自动选择算法.基于径向基核函数(Radial Basis Function,RBF)的支持向量机模型参数C和核宽度参数σ对其泛化能力有很大的影响,首先产生Logistic映射和圆映射的混沌混沌数值序列,而后以通过载波形式将混沌变量的值域"放大"至参数(C,σ)的取值空间,寻找优化变量(C,σ)的最优组合.与网格法的比较实验结果表明,该方法不但可以提高分类识别率,而且显著减少了支持向量机的训练个数,并使支持向量机具有更好的推广能力. In order to improve the automatic recognition rate of voice signals with respect to stored product insects,this paper proposed support vector machine model parameters automatic selection algorithm based on chaotic data series to search for the optimal combination of support vector machine model parameters C and RBF kernel width parameters σ.The parameters(C,σ) have a great impact on the generalization ability.Based on the chaotic sequence generated by Logistic Map and Circle Map,respectively,the chaotic variables are zoomed to the parameter(C,σ) value space to search for the optimal combination.Compared with the grid method,experimental results show that this method can improve the classification rate,and significantly reduce the number of training support vector machines,so the support vector machine has better generalization ability.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第2期36-39,43,共5页 Microelectronics & Computer
基金 国家自然科学基金(61001099) 河南省科技攻关(07210210019) 河南省教育厅自然科学基金(2008B520006)
关键词 支持向量机 仓储物害虫 LOGISTIC映射 圆映射 support vector machine stored product insects logistic Map circle map
  • 相关文献

参考文献6

二级参考文献24

共引文献8

同被引文献56

  • 1唐发明,陈绵云,王仲东.基于支持向量机的仓储害虫声音识别[J].华中科技大学学报(自然科学版),2005,33(2):34-36. 被引量:10
  • 2吕昭智,沈佐锐,程登发,姚青.现代信息技术在害虫种群密度监测中的应用[J].农业工程学报,2005,21(12):112-115. 被引量:15
  • 3姚渭.粮虫陷阱检测技术研究及应用[C]..见:中国粮油学会首届学术年会论文选集(储藏专业卷)[C].石家庄,2000.7-16. 被引量:2
  • 4GB5491--1985,粮食、油料检验扦样、分样法[S]. 被引量:1
  • 5Wilkin D R, Fleura-Lessard F. The detection of insects in grain using conventional samplings spears [C ] //Proc 5th Int Wkg Conf on Stored- product Protection.Bordeaux, 1990:1445-1450. 被引量:1
  • 6Vinushree N, Hemalatha B, Vishnu Kumar Kalia- ppan. Efficient kernel-based fuzzy C-Means clustering for pest detection and classification [C]//2014 World Congress on Computing and Communication Technologies. IEEE Press, 2014:179-181. 被引量:1
  • 7Betty Martin, Vimala Juliet. Detection of Pest infestation by preprocessing sound using vector quantization [ C ]//2010 2nd International Confe- rence on Signal Processing Systems (ICSPS). IEEE Press, 2010:219-223. 被引量:1
  • 8Dai Ting, Zhang Miao,Zhang De Xian. On the intelligent detection of insects in stored grain [ C ]//2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE Press, 2011: 2427-2430. 被引量:1
  • 9QI S F, LI Y H. A New wireless sensor used in grain pests detection [C]//2012 International Conference on Control Engineering and Communication Technology. IEEE Press,2012:755 - 758. 被引量:1
  • 10Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995. 被引量:1

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部