期刊文献+

基于SVC和SVR约束组合的迁移学习分类算法 被引量:5

Transfer classification learning based on combination of both SVC and SVR's constraints
原文传递
导出
摘要 根据迁移学习思想,针对分类问题,以支持向量机(SVM)模型为基础提出一种新的迁移学习分类算法CCTSVM.该方法以邻域间的分类超平面为纽带实现源域对目标域的迁移学习.具体地,以支持向量分类的约束条件完成对目标域数据的学习,获取分类超平面参数,再以支持向量回归的约束条件有效利用源域数据矫正目标域超平面参数,并在上述组合约束的共同作用下实现邻域间迁移,提高分类器性能.在人工和真实数据集上的实验表明,所提出算法具有良好的迁移能力和优越的分类性能. Transfer learning focuses on solving learning tasks in the target domain by leveraging the useful information in the target domain. Therefore, a novel transfer classification learning algorithm called CC-TSVM is proposed, which is based on SVM learning framework. CC-TSVM firstly adopts SVC to get the hyperplane for the source domain and then corrects the obtained hyperplane as the hyperplane for the target domain by using SVR with the constraints for the labeled data in the target domain. The experimental results on artificial and real datasets show that the proposed algorithm has high classification accuracy and can well leverage the useful information in the source domain.
出处 《控制与决策》 EI CSCD 北大核心 2014年第6期1021-1026,共6页 Control and Decision
基金 国家自然科学基金项目(61272210)
关键词 支持向量机 支持向量分类 支持向量回归 迁移学习 support vector machine support vector classification support vector regression transfer learning
  • 相关文献

参考文献18

  • 1Pan S J, Yang Q.A survey on transfer learning[J].IEEE Trans on Knowledge and Data Engineering, 2010 , 22(10): 1345-1359. 被引量:1
  • 2Caruana R.Multitask learning[J].Machine Learning, 1997, 28(1): 41-75. 被引量:1
  • 3Raina R, Battle A, Lee H, et al.Self-taught learning: Transfer learning from unlabeled data[C].Proc of the 24th Int Conf on Machine Learning.Corvalis, 2007: 759-766. 被引量:1
  • 4Daum’Eiii H, Marcu D.Domain adaptation for statistical classifiers[J].J of Artifical Intelligence Research, 2006, 26: 101-126. 被引量:1
  • 5Zadrozny B.Learning and evaluating classifiers under sample selection bias[C].Proc of the 21st Int Conf on Machine Learning.Banff, 2004: 114-122. 被引量:1
  • 6Ben-David S, Schuller R.Exploiting task relatedness for multiple task learning[C].Proc of the 16th Annual Conf on Learning Theory.San Francisco: Morgan Kaufmann, 2003: 825-830. 被引量:1
  • 7Wu P, Dietterich T G.Improving svm accuracy by training on auxiliary data sources[C].Proc of the 21st Int Conf on Machine Learning.Banff, 2004: 69. 被引量:1
  • 8Liao X, Xue Y, Carin L.Logistic regression with an auxiliary data source[C].Proc of the 22nd Int Conf on Machine Learning Bonn.Germany, 2005: 505-512. 被引量:1
  • 9Freund Y, Schapire R E.A decision theoretic generalization of on-line learning and an application to boosting[J].J of Computer and System Sciences, 1997, 55(1): 119-139. 被引量:1
  • 10Dai W, Yang Q, Xue G, et al.Boosting for transfer learning[C].Proc of the 24th Int Conf on Machine Learning.New York: ACM, 2007: 193-200. 被引量:1

同被引文献28

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部