期刊文献+

基于灵敏度分析和蚁群算法的管网监测点优化选择 被引量:11

Optimized Location of Monitoring Points for Water Distribution System Based on Sensitivity Analysis and Ant Colony Algorithm
下载PDF
导出
摘要 针对管网水力模型校正中监测点的优化计算不容易得到最优解、运算时间较长等问题,采用蚁群算法进行求解。由于管网节点的灵敏度矩阵与监测点最优解之间存在一定的对应关系,且充分利用探索信息可以明显提高蚁群算法的优化计算性能,因此考虑将蚁群算法中的探索信息与灵敏度值进行对应。算例结果表明,与穷举法和遗传算法相比,在参数相同的条件下该法可有效减少优化计算的运行时间。 Aimed at the difficulty of obtaining the optimal solution and the problems of multiple solutions and instability existing in optimized calculation of monitoring points in correction of hydraulic model of water distribution system, ant colony algorithm was used to obtain an optimal solution. Analysis shows a corresponding relation between nodal sensitivity and optimal monitoring location. Adding research data can enhance the calculation speed of ant colony algorithms, and therefore, the research data is associated with the sensitivity value. A comparison between the new combined method and conventional methods shows that the combined method can save the calculating time effectively under the same parameters condition.
出处 《中国给水排水》 CAS CSCD 北大核心 2007年第11期94-96,101,共4页 China Water & Wastewater
关键词 给水管网 监测点 灵敏度 蚁群算法 water distribution system monitoring point sensitivity ant colony algorithm
  • 相关文献

参考文献6

  • 1Kapelan Z S.Calibration of Water Distribution System Hydraulic Models[ M ].Exeter:the University of Exeter,2002. 被引量:1
  • 2Bush C A,Uber J G.Sampling design methods for water distribution model calibration[ J ].Journal of Water Resources Planning and Management,1998,124 (6):334 -344. 被引量:1
  • 3Lansey K E.Calibration assessment and data collection for water distribution networks[ J ].Journal of Hydraulic Engineering,2001,127 (4):270-279. 被引量:1
  • 4Meier R W,Barkdoll B D.Sampling design for network model calibration using genetic algorithms[ J ].Journal of Water Resources Planning and Management,2000,126(4):245 -250. 被引量:1
  • 5Dorigo M,Stützle T.Ant Colony Optimization[ M ].Cambridge:The MIT Press,2004. 被引量:1
  • 6信昆仑,程声通,刘遂庆.实数型编码遗传算法校核管道摩阻系数[J].中国给水排水,2004,20(9):68-70. 被引量:13

二级参考文献6

共引文献12

同被引文献67

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部