摘要
在高斯整环中,利用代数数论的方法讨论了不定方程x2+64=y11的有理整数解问题,并证明了不定方程x2+64=y11无整数解.
In Gauss domain,the question that the Diophantine equation x^2+ 64 = y^11 has rational integer solution is discussed by using algebraic number theory and the proof that the Diophantine equation x^2+ 64 = y^11 has no integer solution is given.
出处
《重庆工商大学学报(自然科学版)》
2014年第10期16-17,共2页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
不定方程
整数解
整环
Diophantine equation
integer solution
domain