摘要
在高斯整环中,利用代数数论与同余理论的方法,讨论了不定方程x^2+36=y^17的整数解问题,并证明了不定方程x^2+36=y^17无整数解.
In the Gauss integral rings, the problem of integer solution of the indefinite equation x^2+36=y^17 is discussed using the methods of algebraic number theory and congruence theory, and it is proved that there is no integer solution of the indefinite equation x^2+36=y^17.
作者
于宁宁
Yu Ning-ning(College of Mathematics and Statistics,North China University ofWater Resources and Electric Power,Zhengzhou 450046,China)
出处
《洛阳师范学院学报》
2019年第5期19-21,共3页
Journal of Luoyang Normal University
关键词
高斯整环
代数数论
同余理论
不定方程
整数解
Gauss integral ring
algebraic number theory
congruence theory
indefinite equation
integer solution