摘要
利用代数数论方法,研究不定方程x^2+256=y^9(x,y∈Z)的整数解问题,并证明了其仅有整数解(x,y)=(±16,2).
Using the algebraic number theory,the problem of integer solution on the Diophantine equation x^2+256=y^9 was studied,and the presence of its only integer solutions was proved,that is(x,y)=(±16,2).
出处
《江苏师范大学学报(自然科学版)》
CAS
2018年第1期38-39,共2页
Journal of Jiangsu Normal University:Natural Science Edition
关键词
不定方程
代数数论
整数解
Diophantine equation
algebraic number theory
integer solution