期刊文献+

基于高斯Sigma点选取的改进UPF算法 被引量:2

Improved UPF algorithm based on Gaussian Sigma points selection
下载PDF
导出
摘要 针对标准粒子滤波存在的粒子退化现象,提出了一种改进的UPF算法。该算法采用基于高斯Sigma点选取的自适应无味卡尔曼滤波产生建议分布函数,然后利用MetropolisHastings(MH)方法优化粒子,提高了对系统后验概率密度的逼近程度。仿真结果表明:改进算法降低了粒子滤波算法的粒子退化程度,提高了跟踪精度。 An improved Unscented Particle Filter (UPF) algorithm is proposed to overcome the problem of particles degradation in the standard particle filter. The algorithm uses adaptive unscented Kalman filter based on Gaussian Sigma point selection to generate the proposal distribution function. Then it uses the Metropolis-Hastings (Mtt) algorithm to optimize particles, so that the approximation of the posterior probability density of the system is improved. Simulation results show that the improved UPF algorithm reduces particle degradation which exists in the particle filter algorithm, and improves tracking accuracy.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第5期1435-1440,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61263031)
关键词 计算机应用 粒子滤波 高斯Sigma点 无味卡尔曼滤波 MH方法 computer application particle filter Gaussian Sigma points unscented Kalman filter Metropolis- Hastings
  • 相关文献

参考文献9

二级参考文献67

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 5Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proc. of Radar and Signal Processing, 1993, 140(2) : 107 - 113. 被引量:1
  • 6Isaac A, Willett P, Bar-Shalom Y. Quickest detection and tracking of spawning targets using monopulse radar channel signals [J]. IEEE Trans. on Signal Processing, 2008, 56 (3) : 1302 -1308. 被引量:1
  • 7Angelova D, Mihaylova L. Extended object tracking using Monte Carlo methods[J]. IEEE Trans. on Signal Processing, 2008, 56(2):825 - 832. 被引量:1
  • 8Zia A, Kirubarajan T, Reilly J P, et al. An EM algorithm for nonlinear state estimation with model uncertainties[J]. IEEE Trans. on Signal Processing, 2008, 56(3) :921 - 936. 被引量:1
  • 9Plagemann C, Fox D, Burgard W. Efficient failure detection on mobile robots using particle filters with Gaussian process proposals[DB/OL]. http: //citeseer. ist. psu. edu/ plagemarm06e f ficient, html, 2006. 被引量:1
  • 10Arulampalam M S, Maskell S,Gordon N, et al. A tutorial on particle filters for on-line nonlinear non-Gaussian Bayesian traeking[J]. IEEE Trans. on Signal Processing, 2002,50 (2) : 174 - 188. 被引量:1

共引文献132

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部