期刊文献+

迭代IMM机动目标被动单站跟踪算法 被引量:5

Iterated IMM Algorithm for Maneuvering Target Tracking by a Single Passive Observer
下载PDF
导出
摘要 单站无源定位初始估计误差大、可观测性弱,并且可以得到的观测量受限,对机动辐射源的单站被动定位一直是一个难题。针对单站无源定位以及机动跟踪的特点,为改善IMM(Interacting multiple model)算法在单站无源定位中的性能,对IKF(Iterated Kalman Filter)进行改进,将改进的IKF和IMM结合,提出基于迭代的IMM算法。该算法对IMM算法中模型滤波器的输出进行迭代运算,并在滤波迭代中引入交互,从而减小模型滤波误差,改善模型滤波融合效果。对本文方法和IMM方法的仿真比较表明,本文方法在出现大的估计误差时可以得到比IMM更好的跟踪性能。 Maneuvering target tracking is very intractable for the SOPLAT(single observer passive location and tracking) application which often suffers large initial estimation error,low observability and limited achievable measurements.To improve the filtering performance of IMM algorithm in the SOPLAT application,considering the particularity of SOPLAT,a modified IKF(Iterated Kalman filter) is deduced and combined with the common IMM,thus a new iteration based IMM algorithm can be achieved.The new algorithm conduct...
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第1期304-310,共7页 Journal of Astronautics
基金 武器装备预研基金(9140C1011010601) 国防科学技术大学科研计划项目(CX06-04-03)
关键词 机动跟踪 无源定位 交互多模型 多普勒频率 Maneuvering tracking Passive location Interacting multiple model Doppler frequency
  • 相关文献

参考文献5

  • 1[2]Becket K.Three-dimension target motion analysis using angle and frequency measurements[J].IEEE Trans.Aerospace and Electronic Systems,2005,41(1):284-301. 被引量:1
  • 2[9]Bradley M,Bell,Frederich W,Cathey.The iterated Kahnan filter update as a Gauss-Newton method[J].IEEE Transactions on Auto-maric Control,1993,38(2):294-297. 被引量:1
  • 3[10]Bar-Shalom Y,Li X R and Kimbarajan T.Estimation with Applica-tions to Tracking and Navigation:Theory,Algorithms,and Software.Wiley,New York,2001. 被引量:1
  • 4[11]Li X R and Jilkov V P.Survey of maneuvering target tracking-partⅠ:dynamic models[J].IEEE Trans.Aerospace and Electronic Sys-tems,2003,39(4):1333-1364. 被引量:1
  • 5[12]Pitre Byan B,Jilkov Vesselin P,Li X R.A comparative study of multiple-model algorithm for maneuvering target tracking[J].Proc.of SPIE,2005,5809:549-560. 被引量:1

同被引文献46

  • 1HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei.Target tracking in glint noise using a MCMC particle filter[J].Journal of Systems Engineering and Electronics,2005,16(2):305-309. 被引量:5
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3Mazor E,Averbuch A,and Bar-Shalom Y,et al..Interacting multiple model methods in target tracking:a survey[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-123. 被引量:1
  • 4Kim Byung-doo and Lee Ja-sung.IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C].IEEE International Radar Conference,Arlington,Virginia,USA,May,2005:757-762. 被引量:1
  • 5Cappe O,Godsill S J,and Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924. 被引量:1
  • 6Boers Y and Driessen J N.Interacting multiple model particle filter[J].IEE Proceedings-Radar Sonar Navigation,2003,150(5):344-349. 被引量:1
  • 7Morelande M R and Challa S.Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):252-270. 被引量:1
  • 8Arulampalam M S,Maskell S,and Gordon N,et al..A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on SignalProcessing,2002,50(2):174-188. 被引量:1
  • 9Bell B M and Cathey F W.The iterated Kalman filter update as a Gauss-Newton method[J].IEEE Transactions on Automatic Control,1993,38(2):294-297. 被引量:1
  • 10Johnston L A and Krishnamurthy V.Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm[J].IEEE Transactions on Signal Processing,2001,49(9):1899-1909. 被引量:1

引证文献5

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部