期刊文献+

基于改进粒子滤波和平均代价的故障诊断方法研究 被引量:3

Fault diagnosis based on improved particle filter and mean cost
下载PDF
导出
摘要 为了提高非线性非高斯系统故障诊断的准确性,基于改进粒子滤波方法对系统状态进行估计,将系统状态估计值和实际值之差的绝对值作为残差,当残差平滑值大于阈值时诊断故障发生,使用故障误报率和漏报率构成的平均代价作为诊断效果评价指标。对水位/温度控制系统和一维非线性单变量模型进行仿真,由系统状态方程或观测方程参数跳变模拟故障发生,结果表明,3种算法能诊断出故障的发生,改进粒子滤波算法UPF的故障诊断平均代价小于SIR和UKF,诊断效果优于后两种算法,提高了故障诊断的可靠性。 In order to improve the accuracy of fault diagnosis in non-linear and non-Gaussian system, the method based on improved particle filter estimates the system state, the absolute value of difference between system state estimation and actual value is taken as residual, the fault occurs when the smoothed residual is greater than threshold, the mean cost which is constituted by fault false alarm ratio and miss alarm ratio is taken as evaluation criterion of diagno- sis effectiveness. The water level/temperature control system and one-dimensional non-linear and single-variable model are simulated, the results indicate that the three algorithms could diagnose fault occur when the fault is simulated by the change of the system state equation or observation equation parameter, the fault diagnosis mean cost of the improved particle filter Unscented Particle Filter(UPF) is less than Sampling Importance Resampling (SIR) and Unscented Kalman Filter(UKF), the diagnosis effectiveness of UPF is better than the latter two algorithms, the fault diagnosis reliability is improved.
出处 《电子测量与仪器学报》 CSCD 2010年第1期66-71,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(编号:60776831)资助项目
关键词 故障诊断 非线性非高斯系统 改进粒子滤波 平均代价 fault diagnosis non-linear and non-Gaussian system improved particle filter mean cost
  • 相关文献

参考文献11

  • 1黄采伦,樊晓平,陈特放著..列车故障在线诊断技术及应用[M].北京:国防工业出版社,2006:328.
  • 2LI P, KADIRKAMANATHAN V. Partcle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems[J]. IEEE Transactions on Systems, Man, and Cybemetics-PartC: Applications and Reviews, 2001, 31(3): 337-343. 被引量:1
  • 3许秀玲,汪晓东,张浩然.基于卡尔曼滤波器的传感器故障诊断[J].仪器仪表学报,2005,26(z1):79-80. 被引量:10
  • 4KADIRKAMANATHAN V, LI P, JAWARD M H,et al. A sequential Monte Carlo filtering approach to fault detection and isolation in nonlinear systems[C]. Sydney : Decision and Control. December, 2000: 245-250. 被引量:1
  • 5KADIRKAMANATHAN V, LI P, JAWARD M H, et al. Particle filtering-based fault detection in non-linear stochastic systems[J]. International Journal of Systems Science, 2002, 33(4): 259-265. 被引量:1
  • 6梁军,乔立岩,彭喜元.基于SIR粒子滤波状态估计和残差平滑的故障检测算法[J].电子学报,2007,35(B12):32-36. 被引量:8
  • 7梁军,彭喜元.基于观测相似性粒子滤波的纯角度目标跟踪[J].电子测量与仪器学报,2009,23(2):10-14. 被引量:12
  • 8GORDON N, SALMOND D. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[C] Proc of Institute Electric Engineering,1993, 140(2): 107-113. 被引量:1
  • 9RUDOLPH M, ARNAUD D, NANDO F, et al. The unscented Particle Filter, 2000, 380: 5-30. 被引量:1
  • 10WANG P, CHEN X M, ALDEMIR T. DSD: A generic software for model-based fault diagnosis in dynamic systems [J].Reliability Engineering and System Safety, 2002, 75: 31-39. 被引量:1

二级参考文献30

  • 1钱忠良,陈伟灿.红外图像目标瞄准点测量和基于自适应Kalman滤波的瞄准点跟踪[J].电子测量与仪器学报,1994,8(1):43-51. 被引量:5
  • 2AIDALA V J, HAMMEL S E. Utilization of modified polar coordinates for bearing-only tracking[J]. IEEE Transaction on AC, 1983,28(4) : 283-290. 被引量:1
  • 3FOGEL E,GAVISH M. Nth-order dynamics target observability from angle measurements [J]. IEEE Trans on Aerospace & Electronic Systems, 1988,12(3): 305- 307. 被引量:1
  • 4SPRINGARN K. Passive position location estimation using the extended Kalman filter systems[J]. IEEE Trans. Aerospace and Electronic Systems, AES-23, 1987 : 558-567. 被引量:1
  • 5PHAM D T. Some quick and efficient methods for bearing-only target motion analysis[J]. IEEE Transactions on Signal Processing,1993,41(9):2727-2751. 被引量:1
  • 6GORDON N, SALMOND D. Novel approach to non-linear and non-gaussian bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140 (2):107-113. 被引量:1
  • 7LIANG J, PENG X Y, MA Y T. Particle estimation algorithm using correlation of observation for nonlinear system state[J]. Electronics Letters, 2008. 44(8):553- 554. 被引量:1
  • 8ARULAMPALAM M S, MASKELL S,GORDON N, et al. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking[J]. Signal Processing, IEEE Transactions, 2002,50 (2) : 174-188. 被引量:1
  • 9PITT M, SHEPHARD N. Filtering via simulation: Auxiliary particle filter[J]. Amer. Statist. Assoc, 1999, 94(446) :590-599. 被引量:1
  • 10MUSSO C, OVDTANE N, LEGLAND F. Improving regularized particle filter[M]//DOUCET A, DE FREITAS J F G, GORDON N J. Sequential monte carlo methods[A]. New York: Springer-Verlag, 2001: 247- 272. 被引量:1

共引文献25

同被引文献28

  • 1黄铫,张天骐,李越雷,刘燕丽.一种扩维无迹卡尔曼滤波[J].电子测量与仪器学报,2009,23(S1):56-60. 被引量:9
  • 2马加庆,韩崇昭.一类基于信息融合的粒子滤波跟踪算法[J].光电工程,2007,34(4):22-25. 被引量:15
  • 3VERMAAK J, BLAKE A. Nonlinear filtering for speaker tracking in noisy and reverberant environments[C]. Salt Lake City: IEEE International Conference On Acoustics speech and signal processing (ICASSP), 2001: 3021-3024. 被引量:1
  • 4KUHNE M, TOGNERI R, NORDHOLM S.Robust source localization in reverberant environment based on weighted fuzzy clustering[J]. IEEE signal processing letters, 2009, 16(2): 85-88. 被引量:1
  • 5VALIN J M, MICHADD F, ROUAT J R.Localization and tracking of simultaneous moving sound sources using beam forming and particle filtering [J].Robotics and Autonomous Systems, 2007, 55: 216-228. 被引量:1
  • 6SKI B G. Computer visions face tracking as a component of a perceptual user interface[C]. In Proc. Workshop Applications Computer Vision, 1998: 214-219. 被引量:1
  • 7COMANECI D, RIMES V, MEER EReal-time tracking of no rigid objects using mean shift[C]. Proc. Conf. Computer Vision and Pattern Recognition, 2000, II: 142149. 被引量:1
  • 8COMANICIU, RAMESH D, MEER V E Kernel-based object tracking[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(5): 564-577. 被引量:1
  • 9程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:99
  • 10金乃高,殷福亮,陈喆.基于动态贝叶斯网络的音视频联合说话人跟踪[J].自动化学报,2008,34(9):1083-1089. 被引量:7

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部