期刊文献+

一种加权邻域数据关联算法研究 被引量:7

Study on weighted neighbor data association algorithm
下载PDF
导出
摘要 借鉴概率数据关联的思想,在标准最近邻域算法基础上提出了加权邻域数据关联算法(WNDA)。该算法综合考虑相关波门内的所有量测(包括正确量测和虚假量测)对状态的影响,提高了关联效果。同时算法不需要杂波密度等先验知识,不需要计算量测的关联概率,因而保持了较小的计算量。仿真结果表明,该方法有效地降低了误关联对跟踪效果的影响,同时保持了较小的计算量,在实际工程中有较好的应用前景。 Learning from correlation probability, this paper proposes a weighted neighbor data association algorithm (WNDA) based on the nearest neighbor standard filter (NNSF). The method considers the impacts from all candidate measurements within correlation gate, no matter the measurements are true or false. The simulation results show that the proposed algorithm not only track well, but also keep small calculation cost, so, it can be applied in real work
出处 《电子测量与仪器学报》 CSCD 2009年第10期43-47,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(编号:60736045)资助项目
关键词 目标跟踪 数据关联 最近邻域数据关联 概率数据关联 target tracking data association nearest neighbor standard filter probabilistic data association filter
  • 相关文献

参考文献3

二级参考文献15

  • 1钱忠良,陈伟灿.红外图像目标瞄准点测量和基于自适应Kalman滤波的瞄准点跟踪[J].电子测量与仪器学报,1994,8(1):43-51. 被引量:5
  • 2AIDALA V J, HAMMEL S E. Utilization of modified polar coordinates for bearing-only tracking[J]. IEEE Transaction on AC, 1983,28(4) : 283-290. 被引量:1
  • 3FOGEL E,GAVISH M. Nth-order dynamics target observability from angle measurements [J]. IEEE Trans on Aerospace & Electronic Systems, 1988,12(3): 305- 307. 被引量:1
  • 4SPRINGARN K. Passive position location estimation using the extended Kalman filter systems[J]. IEEE Trans. Aerospace and Electronic Systems, AES-23, 1987 : 558-567. 被引量:1
  • 5PHAM D T. Some quick and efficient methods for bearing-only target motion analysis[J]. IEEE Transactions on Signal Processing,1993,41(9):2727-2751. 被引量:1
  • 6GORDON N, SALMOND D. Novel approach to non-linear and non-gaussian bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140 (2):107-113. 被引量:1
  • 7LIANG J, PENG X Y, MA Y T. Particle estimation algorithm using correlation of observation for nonlinear system state[J]. Electronics Letters, 2008. 44(8):553- 554. 被引量:1
  • 8ARULAMPALAM M S, MASKELL S,GORDON N, et al. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking[J]. Signal Processing, IEEE Transactions, 2002,50 (2) : 174-188. 被引量:1
  • 9PITT M, SHEPHARD N. Filtering via simulation: Auxiliary particle filter[J]. Amer. Statist. Assoc, 1999, 94(446) :590-599. 被引量:1
  • 10MUSSO C, OVDTANE N, LEGLAND F. Improving regularized particle filter[M]//DOUCET A, DE FREITAS J F G, GORDON N J. Sequential monte carlo methods[A]. New York: Springer-Verlag, 2001: 247- 272. 被引量:1

共引文献11

同被引文献78

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部