期刊文献+

改进增强峭度图和增强包络谱在滚动轴承故障诊断上的应用 被引量:9

Application of improved enhanced kurtogram and enhanced envelope spectrum in fault diagnosis of rolling bearings
下载PDF
导出
摘要 针对滚动轴承故障诊断问题,在分析了基于二进制小波包分解的增强峭度图方法的不足后,提出了基于谐波小波包分解的改进增强峭度图方法。通过计算故障信号的改进增强峭度图,筛选出峭度值最大的最优节点,利用最优节点处的谐波小波包系数进行信号重构,并对重构信号做增强包络谱分析,利用故障特征频率的理论计算值与增强包络谱中峰值明显的谱线进行对比,从而对轴承故障类型做出判断。运用所提出的诊断方法分别对滚动轴承内圈故障模拟、实测信号进行分析,结果表明,该方法具有一定的可靠性,能够满足实际的工程需要。 To effectively extract the fault features of rolling bearings,an improved enhanced kurtogram method based on harmonic wavelet packet decomposition was presented after analyzing the shortcoming of conventional enhanced kurtogram method based on binary wavelet packet decomposition.The node with the maximum kurtosis value was selected after the improved enhanced kurtogram of fault signal was computed,then the harmonic wavelet packet coefficient of the optimal node was used to reconstruct the signal and the reconstructed signal was successively analysed by using the enhanced envelope spectrum.The fault type of rolling bearing was judged by comparing the theoretical calculation value of fault characteristic frequency with the spectral lines whose amplitudes were obvious in the enhanced envelope spectrum. The simulated inner fault signal and the measured inner fault signal of rolling bearings were analyzed by the proposed method,and the diagnosis results show that the new method is reliable and can meet the actual requirements.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第13期53-58,共6页 Journal of Vibration and Shock
关键词 改进增强峭度图 增强包络谱 滚动轴承 故障诊断 improved enhanced kurtogram enhanced envelope spectrum rolling bearings fault diagnosis
  • 相关文献

参考文献12

  • 1胡爱军,马万里,唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报,2012,32(11):106-111. 被引量:200
  • 2Dwyer R F. Detection of non-gaussian signals by frequency domain kurtosis estimation [ C ]//Acoustics, Speech, and Signal Processing . Boston: IEEE International Conference on ICASSP, 1983:607 - 610. 被引量:1
  • 3Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals [ J ]. Mechanical Systems and Signal Processing,2006,20(2) :282 -307. 被引量:1
  • 4Antoni J, Randall R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20(2) :308 -331. 被引量:1
  • 5Antoni J. Fast computation of the kurtogram for the detection of transient faults [ J ]. Mechanical Systems and Signal Processing,2007,21 ( 1 ) : 108 - 124. 被引量:1
  • 6Wang D, Tse P W, Tsui K L. An enhanced kurtogram method for fault diagnosis of rolling element bearings [ J ]. Mechanical Systems and Signal Processing,2013,35 ( 1 ) : 176 - 199. 被引量:1
  • 7王胜春,韩捷,李志农,李剑峰.谐波小波包自适应分解在故障诊断中的应用[J].农业机械学报,2007,38(10):174-177. 被引量:9
  • 8王冬云.转子-轴承故障诊断方法研究[D].秦皇岛:燕山大学,2012. 被引量:1
  • 9Marple S L. Computing the discrete-time analytic" signal via FFT [ J]. IEEE Transactions on Signal Processing, 1999, 47 (9) : 2600 - 2603. 被引量:1
  • 10Su Wen-sheng, Wang Feng-tao, Zhu Hong, et al. Roiling element bearing faults diagnosis based on optimal morlet wavelet filter and autocorrelation enhancement [ J ]. Mechanical Systems and Signal Processing, 2010, 24 ( 5 ) : 1458 - 1472. 被引量:1

二级参考文献29

共引文献214

同被引文献67

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部