期刊文献+

基于EMD和SVM的滚动轴承故障诊断方法 被引量:31

Fault Diagnosis of Roller Bearings Based on EMD and SVM
下载PDF
导出
摘要 将支持向量机(Support V ectorM ach ine,简称SVM)、经验模态分解(Em p irica lM ode D ecom pos ition,简称EM D)方法和AR(A u to-R egress ive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模态分解,将其分解为多个内禀模态函数(In trins ic M ode Function,简称IM F)之和,然后对每一个IM F分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征向量,并以此作为SVM分类器的输入参数来区分滚动轴承的工作状态和故障类型。实验结果表明,该方法在小样本情况下仍能准确、有效地对滚动轴承的工作状态和故障类型进行分类,从而实现了滚动轴承故障诊断的自动化。 A roller bearing fault diagnosis method was proposed in which Support Vector Machine (SVM) and Auto-Regressive (AR) model based on Empirical Mode Decomposition (EMD) were combined. EMD method was used to decompose the roller bearing vibration signal into a finite number of Intrinsic Mode Functions (IMFs) ,then the AR model of each IMF component was established ,finally ,the auto-regressive parameters and the variance of remnant were regarded as the fault characteristic vectors and served as input parameters of SVM classifier to classify working condition of the roller bearing. The experimental results show that the proposed approach can classify working condition of roller bearings accurately and effectively even in the case of small number of samples and the atomization of the roller bearing fault diagnosis can be implemented.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2006年第3期575-580,共6页 Journal of Aerospace Power
基金 国家自然科学基金资助(50275050) 高等学校博士点专项科研基金资助(20020532024)
关键词 航空 航天推进系统 经验模态分解 AR模型 支持向量机 滚动轴承 故障诊断 aerospace propulsion system empirical mode decomposition auto-regressive model support vector machines roller bearings fault diagnosis
  • 相关文献

参考文献16

  • 1陈进.信号处理在机械设备故障诊断中的应用(连载) 第二讲 现代信号处理与特征提取(上)[J].振动与冲击,1999,18(3):91-93. 被引量:11
  • 2Sun Q.Singularity Analysis Using Continuous Wavelet Transform for Bearing Fault Diagnosis[J].Mechanical Systems and Signal Processing,2002,16 (6):1025~1041. 被引量:1
  • 3Nikolaou N G,Antoniadis I A.Rolling Element Bearing Fault Diagnosis Using Wavelet Packets[J].NDT & International,2002,35:179~ 205. 被引量:1
  • 4Shin K.Optimal Autoregressive Modeling of a Measured Noisy Deterministic Signal Using Singular-Value Decomposition[J].Mechanical Systems and Signal Processing,2003,17(2):423~432. 被引量:1
  • 5Salami M J E,Sidek S N.Parameter Estimation of Multicomponent Transient Signals Using Deconvolution and ARMA Modeling Techniques[J].Mechanical Systems and Signal Processing,2003,17(6):1201~1218. 被引量:1
  • 6Huang N E,Shen Z,Long S R.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and NonStationary Time Series Analysis[J].Proc.R.Soc.Lond.A,1998,(454):903~995. 被引量:1
  • 7Huang N E,Shen Z,Long S R.A New View of Nonlinear Water Waves:The Hilbert Spectrum[J].Annu.Rev.Fluid Mech.,1999,31:417~457. 被引量:1
  • 8黄文虎.设备故障诊断原理、技术及应用[M].科学技术出版社,1999.. 被引量:2
  • 9Jack L B,Nandi A K,McCormick A C.Diagnosis of Rolling Element Bearing Fault Using Radial Basis Function Networks[J].Applied Signal Processing,1999,(6):25~32. 被引量:1
  • 10McCormick A C,Nandi A K.Classification of Rotating Machine Condition Using Artificial Neural Networks Proceedings of the Institution of Mechanical Engineers-Part C[J].Journal of Mechanical Engineering Science,1997,11 (6):439~450. 被引量:1

二级参考文献1

共引文献2274

同被引文献292

引证文献31

二级引证文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部