期刊文献+

基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:55

Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine
下载PDF
导出
摘要 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 In view of the non-stationary features of vibration signals of gear and the difficulty to obtain a large number of fault samples in practice, a fault diagnosis scheme based on ensemble empirical mode decomposition (EEMD) energy entropy and support vector machine is put forward. Firstly, original acceleration vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs); the energy of vibration signal will change in different frequency bands when fault occurs. Therefore, to identify the fault pattern and condition, energy feature extracted from a number of IMFs that contained the most dominant fault information could serve as input vectors of support vector machine. Practical examples show that the diagnosis approach put forward can identify gear fault patterns effectively.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页 Journal of Central South University:Science and Technology
基金 国家高技术研究发展计划("863"计划)项目(2006AA04Z402) 内蒙古自治区高等学校科学研究项目(NJZY11148)
关键词 总体平均经验模态分解 本征模函数 能量熵 支持向量机 故障诊断 ensemble empirical mode decomposition intrinsic mode function energy entropy SVM fault diagnosis
  • 相关文献

参考文献11

二级参考文献33

  • 1李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报,2005,41(8):195-198. 被引量:13
  • 2孙晖,朱善安.基于时延自相关预处理的Hilbert-Huang变换解调[J].浙江大学学报(工学版),2005,39(12):1998-2001. 被引量:6
  • 3丁芳,高立新,崔玲丽,胥永刚.齿轮振动中调频信号的解调方法及仿真计算[J].噪声与振动控制,2007,27(3):43-45. 被引量:2
  • 4WU Zhaohua, HUANG Norden E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc Lond: A, 2004,460:1597-1611. 被引量:1
  • 5WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1(1) :1-41. 被引量:1
  • 6HUANG Norden E, ZHENG Shen, STEVEN R L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond.. A, 1998, 454:903- 995. 被引量:1
  • 7FLANDRIN P, CONCALVES G, RILLIN G. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing, 2004,11 (2) : 112-114 被引量:1
  • 8Huang N E, Long S R,Shen Z. A new view of nonlinear water waves: The Hilbert spectrum, Annu. Rev. Fluid. Mech, 1999, 31(3) :417 -451. 被引量:1
  • 9Rifling G, Flandrinand P, Goncalves P. On Empirical Mode Decomposition and its algorithms[ C]. IEEE- EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP - 03, Grado (I), June 2003. 被引量:1
  • 10Randall R B.A New Method of Modeling Gear Faults[J].Journal of Mechanical Design,1982,104:259-267. 被引量:1

共引文献2420

同被引文献507

引证文献55

二级引证文献559

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部