期刊文献+

一种基于主分量分析的融合识别方法 被引量:5

A Method of Fusion Recognition Based on PCA
下载PDF
导出
摘要 针对传统的基于主分量分析的模式识别很难获得很高的识别率的问题,提出了一种基于主分量分析的融合识别方法。采用D- S证据理论对基于两种K- L 变换的主分量分析法提取的低维特征进行融合识别。交通标志的形状识别实验表明了该融合识别算法降低特征维数的同时有效地提高了识别率。 In allusion to the question that it can not get both recognition rates and character dimensions in the pattern recognition at the same time, it proposes a method of fusion recognition based on PCA. It uses Dempster-Shafer theory to make fusion recognition to two extracted low dimension characters, which are based on two different K-L transforms. The shape recognition test of traffic signs has indicated this method of fusion recognition can reduce character dimensions and advance the recognition rate effectively.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第z3期440-442,共3页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金资助项目(60175011 60375011) 安徽省重点科研项目(03021012) 安徽省优秀青年科技基金资助项目(03042044)。
关键词 主分量分析 D S 证据理论 PCA Dempster-Shafer theory Fusion
  • 相关文献

参考文献8

  • 1高隽编著..人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:209.
  • 2[3]焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1996. 被引量:3
  • 3[3]Hu Liangmei, Gao Jun, Wang Andong, Hu Yong. A neural network shape recognition system based on D-S theory 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, October 12- 15,2003,524~528. 被引量:1
  • 4[5]Lawrence A. Klein. Sensor and data fusion concepts and applications. SPIE Optical Engineering Press, 1999. 被引量:1
  • 5郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:156
  • 6[7]Thierry Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. , 2000,10(2) :131~150. 被引量:1
  • 7董火明,高隽,胡良梅,董文雯.基于主分量分析的形状特征提取及识别研究[J].合肥工业大学学报(自然科学版),2003,26(2):176-179. 被引量:25
  • 8[12]Yong Hu, Jun Gao, Liang-Mei Hu, Huo-Ming Dong.A new method of determing the basic belief assignment in D-S evidence theory. The Second International Conference on Machine Learning and Cybernetics (ICMLC2003), Xi'an, China, Nov. 2003,3208~3212. 被引量:1

二级参考文献19

共引文献181

同被引文献51

  • 1于德介,陈淼峰,程军圣,杨宇.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击,2006,25(2):24-26. 被引量:33
  • 2Peter H, Oscar C. A Novel Blind Muhiple Watermarking Technique for Images[ J]. IEEE Trans. on Circuits and Systems for Video Technology,2003,13 (8) :813 -830. 被引量:1
  • 3Chang T, Kou J. Texture Analysis and Classification with Tree-structured Wavelet Transform [ J ]. IEEE Trans on Image Processing, 1993,2 (4) :429-441. 被引量:1
  • 4Kuei Ann Wen, et al. The Transform Image Codec Based on Fuzzy Control and Human Visual System [ J ~. IEEE Trans on Fuzzy Systems, 1995,3 ( 3 ) :253 - 259. 被引量:1
  • 5Juliana F, Mark H. Muhiscale Color lnvariants Based on the Human Visual System[J] IEEE Trans on Image Processing,2001,10( 11 ) : 1630 - 1638. 被引量:1
  • 6Mark D. Algorithms for Nonnegative Independent Component Analysis [ J ]. IEEE Trans on Neural Networks,2003,14 ( 3 ) :534 - 543. 被引量:1
  • 7Amari S, Cichocki A. Adaptive Blind Signal Processing. Neural Network Approaches[ C ], Proe. 1EEE, 1998,86(10) :2026 - 2048. 被引量:1
  • 8Zhijun Wang,et al. A Comparative Analysis of Image Fusion Methods [ J ]. IEEE Trans on GeoscienCe and Remote Sensing, 2005,43 (6) : 1391 - 1402. 被引量:1
  • 9Hui Kong, et al. Generalized 2D Principal Component Analysis [ A ]. IEEE Intl. Conf. on Neural Networks,2005 : 108-113. 被引量:1
  • 10Tung Shou Chen, et al. A Combined K-means and Hierarchical Clustering Method for Improving the Clustering Efficiency of Microarray [ A ]. IEEE Intl. Conf. on Intelligent Signal Processing and Communication Systems,2005:405 -408. 被引量:1

引证文献5

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部