期刊文献+

基于MCKD的海上风机齿轮箱轴承故障诊断方法

Fault Diagnosis Method of Offshore Wind Turbine Gearbox Bearing Based on MCKD
下载PDF
导出
摘要 海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增强包络谱对轴承的故障特征频率进行提取,从而实现对轴承的故障诊断。将该方法应用到海上风机齿轮箱轴承的模拟信号和实测信号中,研究结果表明:该方法对海上强噪声环境下齿轮箱轴承故障的特征提取和诊断具有良好的效果。 The gearbox of offshore wind turbines features a complex structure that is susceptible to faults.Additionally,the characteristic signals of bearing faults are challenging to extract due to significant noise interference during wind turbine operation.To tackle these challenges,a fault diagnosis method based on Maximum Correlation Kurtosis Deconvolution(MCKD)is proposed.The MCKD algorithm is used to denoise and enhance the feature of the vibration signal,and the enhanced envelope spectrum is used to extract the fault characteristic frequency of the bearing,so as to realize the fault diagnosis of the bearing.The method is applied to the analog signal and the measured signal of the gearbox bearing of the offshore wind turbine.The results show that the method has a good effect on the feature extraction and diagnosis of the gearbox bearing fault in a strong noise environment.
作者 郭奇 祁雷 赵杨 徐晴晴 刘浩 GUO Qi;QI Lei;ZHAO Yang;XU Qingqing;LIU Hao(Clean Energy Branch,CNOOC Energy Development Co.,Ltd.;College of Safety and Ocean Engineering,China University of Petroleum(Beijing))
出处 《油气田地面工程》 2024年第6期62-67,72,共7页 Oil-Gas Field Surface Engineering
基金 中海油能源发展股份有限公司-中国石油大学(北京)联合创新基金:海上风电工程技术规范与标准体系及关键共性技术研究(GD2021ZCAF0021) 中国石油科技创新基金研究项目:基于大数据的油气田站场风险预警技术(2021DQ02-0801)。
关键词 海上风机齿轮箱 轴承 故障诊断 最大相关峭度解卷积 增强包络谱 offshore wind turbine gearbox bearings fault diagnosis maximum correlated kurtosis deconvolution enhanced envelope spectrum
  • 相关文献

参考文献10

二级参考文献84

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3黄文虎,等.设备故障诊断原理、技术与应用[M].北京:科学出版社.1999. 被引量:1
  • 4黄仁.机械制造过程的工况检测与故障诊断[M].西安:线交通大学出版社,1991. 被引量:1
  • 5TSE P W, PENG Y H, YAM R. Wavelet analysis and envelop detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities[J]. Journal of Vibration and Acoustics, 2001, 23 ( 3 ) : 303-310. 被引量:1
  • 6HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. Roy. Soc. London. A, 1998, 454: 903-995. 被引量:1
  • 7王胜春,韩捷,李志农,李剑峰.谐波小波包自适应分解在故障诊断中的应用[J].农业机械学报,2007,38(10):174-177. 被引量:9
  • 8Dwyer R F. Detection of non-gaussian signals by frequency domain kurtosis estimation [ C ]//Acoustics, Speech, and Signal Processing . Boston: IEEE International Conference on ICASSP, 1983:607 - 610. 被引量:1
  • 9Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals [ J ]. Mechanical Systems and Signal Processing,2006,20(2) :282 -307. 被引量:1
  • 10Antoni J, Randall R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20(2) :308 -331. 被引量:1

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部