期刊文献+

具有二级搜索和高斯学习的粒子群优化算法 被引量:1

Particle Swarm Optimization Algorithm Based on Two Steps Search and Gauss Learning
下载PDF
导出
摘要 针对微粒群算法(particle swarm optimization)收敛速度慢和早熟收敛的问题,提出一种基于二级搜索(Two steps search)和高斯学习(Gauss learning)相结合的粒子群优化算法(TGPSO).该算法借鉴人工蜂群算法能有效地进行局部搜索和全局搜索,并能在陷入局部极值时跳出局部极值的特点,从两方面对微粒群算法进行改进:通过二级搜索,强化较优粒子的局部搜索能力,可加快收敛速度;应用高斯学习的自适应逃逸能力,可有效地逃离局部最优点.在典型测试函数集上的仿真实验结果表明本文算法有较好的寻优性能并能快速地找到最优解. In order to solve the problem of low convergence rate and Premature Convergence of particle swarm optimization,an improved particle swarm optimization algorithm is proposed which based on two steps search and Gauss learning. In combination with the strength of artificial bee colony(ABC) which can effectively carry out local and global search and jump out local extreme points when it gets into the local extreme,the particle swarm algorithm can be improved in two aspects. Firstly,two steps search can enhance the ability of local search of the optimal particle and consequently increase the convergence speed. Secondly,applying the adaptive escape ability of Gauss learning function can effectively escape from local optima. Simulation experimental results on benchmark functions show that the improved particle swarm optimization algorithm achieves better performance and can rapidly find the optimal solution.
作者 吴润秀 孙辉
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第7期1636-1641,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61261039)资助 江西省自然科学基金项目(20122BAB201043 20132BAB211031)资助 江西省教育厅科技项目(GJJ13763 GJJ13761)资助
关键词 粒子群优化算法 人工蜂群算法 二级搜索 高斯学习 particle swarm optimization(PSO) artificial bee colony algorithm two steps search Gauss learning
  • 相关文献

参考文献7

二级参考文献75

共引文献91

同被引文献13

  • 1钟一文,宁正元,蔡荣英,詹仕华.一种改进的离散粒子群优化算法[J].小型微型计算机系统,2006,27(10):1893-1896. 被引量:20
  • 2J Kennedy, R C Eberhart. Particle swarm optimization [ C ]. Pro- ceedings of IEEE International Conference on Neural Networks, Piscataway: IEEE Press, 1995: 1492- 1498. 被引量:1
  • 3Z H Zhan, et al. Adaptive particle swarm optimization [ J ]. 1EEE Transactions on Systems, Man, and Cybernetics, 2009,39 (6) : 1362 - 1381. 被引量:1
  • 4G Venter, J Sobieszczanski- Sobieski. Particle swarm optimiza- tion. Collection of Technical Papers - AIAA/ASME/ASCE/ AHS/ASC Structures [ C ]. Structural Dynamics and Materials Coference. American Inst, Aeronautics and Astronautics Inc. 2002 : 282 - 290. 被引量:1
  • 5G Venter, J Sobieszczanski - Sobieski. Muhidisciplinary optimi- zation of a transport aircraft wing using particle swarm optimization [ J ]. Structural and Muhidisplinary Optimization, 2004,26 ( 1 - 2) : 121 - 131. 被引量:1
  • 6A Ratnaweera, S K Halgamuge, H C Watson. Self- organizing hierarchical particle swarm optimizer with time - varying accelera- tion coefficients[ J]. EEE Transactions on Evolutionary Computa- tion, 2004,8(3) : 240 -255. 被引量:1
  • 7陈人云.高振荡函数积分的高效数值算法及实现研究[D].中南大学,2009. 被引量:1
  • 8刘玲,钟伟民,钱锋.改进的混沌粒子群优化算法[J].华东理工大学学报(自然科学版),2010,36(2):267-272. 被引量:39
  • 9徐文星,耿志强,朱群雄,顾祥柏.基于SQP局部搜索的混沌粒子群优化算法[J].控制与决策,2012,27(4):557-561. 被引量:22
  • 10王晓霞,刘春生,姚烯.基于粒子群优化的多操纵面飞行器的重构控制[J].电光与控制,2014,21(5):68-72. 被引量:6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部