期刊文献+

组织进化算法求解SAT问题 被引量:8

An Organizational Evolutionary Algorithm for SAT Problem
下载PDF
导出
摘要 基于组织的概念设计了一种新的进化算法———求解SAT问题的组织进化算法 (OrganizationalEvolution aryAlgorithmforSATproblem ,OEASAT) .OEASAT将SAT问题分解成若干子问题 ,然后用每个子问题形成一个组织 ,并根据SAT问题的特点设计了三种组织进化算子———自学习算子、吞并算子和分裂算子以引导组织的进化 .根据组织的适应度 ,将所有组织分成两个种群———最优种群和非最优种群 ,然后用进化的方式来控制各算子 ,以协调各组织间的相互作用 .OEASAT通过先解决子问题 ,再协调相冲突变量的方式来求解SAT问题 .由于子问题的规模较小 ,相对于原问题来说较容易解决 ,这样就达到了降低问题复杂度的目的 .实验用标准SATLIB库中变量个数从 2 0~ 2 5 0的 370 0个不同规模的标准SAT问题对OEASAT的性能作了全面的测试 ,并与著名的WalkSAT和RFEA2的结果作了比较 .结果表明 ,OEASAT具有更高的成功率和更高的运算效率 .对于具有 2 5 0个变量、10 6 5个子句的SAT问题 ,OEASAT仅用了 1.5 2 4s,表现出了优越的性能 . Based on the concept of organization, a novel evolutionary algorithm, Organizational Evolutionary Algorithm for SAT problem (OEASAT), is proposed to deal with the satisfiability problem. OEASAT first divides a SAT problem into several sub-problems, and forms an organization by each sub-problem. Three new evolutionary operators, the self-learning operator, the annexing operator and the splitting operator, are designed with the intrinsic properties of SAT problems in mind. Furthermore, all organizations are divided into two populations according to their fitness. One is the best population, and the other is the not best population. Then, the evolutionary operators are controlled by means of evolution, so that the populations can evolve. The idea of OEASAT is to solve the sub-problem first, and then synthesize the solution of the original problem. Since the scale of the sub-problems is smaller than that of the original problem, this method can reduce the complexity of the problems. In the experiments, 3700 benchmark SAT problems in SATLIB are used to test the performance of OEASAT. The number of variables of these problems ranges from 20 to 250. Moreover, the performance of OEASAT is compared with those of two well-known algorithms, WalkSAT and RFEA2. All experimental results show that OEASAT has a higher success ratio and a lower computational cost. OEASAT can solve the problems with 250 variables and 1065 clauses by only 1 524 seconds and outperforms all other algorithms.
出处 《计算机学报》 EI CSCD 北大核心 2004年第10期1422-1428,共7页 Chinese Journal of Computers
基金 国家自然科学基金重点项目 (60 13 3 0 10 60 3 72 0 45 ) 国家"八六三"高技术研究发展计划项目基金 (2 0 0 2AA13 5 0 80 )资助
关键词 组织 进化算法 SAT问题 0EASAT 自学习算子 分裂算子 合取范式可满足性问题 人工智能 evolutionary algorithms organization SAT problem
  • 相关文献

参考文献11

  • 1Selman B. , Kautz H. A. , Cohen B.. Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence, American Association for Artificial Intelligence, Seattle, Washington, 1994, 337~343 被引量:1
  • 2Folino G. , Pizzuti C. , Spezzano G.. Parallel hybrid method for SAT that couples genetic algorithms and local search. IEEE Transactions on Evolutionary Computation, 2001, 5 (4): 323~334 被引量:1
  • 3张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. 被引量:165
  • 4张德富,黄文奇,汪厚祥.求解SAT问题的拟人退火算法[J].计算机学报,2002,25(2):148-152. 被引量:27
  • 5刘静,钟伟才,刘芳焦,李成.组织协同进化分类算法[J].计算机学报,2003,26(4):446-453. 被引量:25
  • 6刘静,钟伟才,刘芳,焦李成.组织进化数值优化算法[J].计算机学报,2004,27(2):157-167. 被引量:19
  • 7Coase R. H.. The Firm, the Market, and the Law. Chicago:University of Chicago Press, 1988 被引量:1
  • 8Wilcox J. R.. Organizational learning within a learning classifier system[M. S. dissertation]. University of Illinois, Illinois,USA, 1995 被引量:1
  • 9Mitchell D. , Selman B. , Levesque H.. Hard and easy distributions of SAT problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, American Association for Artificial Intelligence, 1992, 459~465 被引量:1
  • 10Gottlieb J. , Marchiori E. , Rossi C.. Evolutionary algorithms for the satisfiability problem. Evolutionary Computation,2002, 10(1): 35~50 被引量:1

二级参考文献37

  • 1李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 2刘涛,李国杰.求解SAT问题的局部搜索算法及其平均时间复杂性分析[J].计算机学报,1997,20(1):18-26. 被引量:5
  • 3康立山 谢云 等.模拟退火算法.非数值并行算法(第一册)[M].北京:科学出版社,1998.. 被引量:1
  • 4张德富 尹爱华 等.求解SAT问题的拟人神经网络算法[J].南京大学学报,2000,36(10):46-50. 被引量:1
  • 5[1]Holland J H. Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems. In: Michalski R, Carbonnel J, Mitchell T eds. Machine Learning: An AI Approach. Los Altos, CA: Morgan Kaufmann, 1986.593~623 被引量:1
  • 6[2]Wilson S. Classifier systems and the animate problem. Machine Learning, 1987, 2(3): 199~228 被引量:1
  • 7[3]Greene D P, Smith S F. Competition-based induction of decision models from examples. Machine Learning, 1993, 13: 229~257 被引量:1
  • 8[4]De Jong K A, Spears W, Gordon D F. Using genetic algorithms for concept learning. Machine Learning, 1993, 13(2-3): 155~188 被引量:1
  • 9[5]Janikow C Z. A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 1993, 13(2-3): 189~228 被引量:1
  • 10[6]Liuyu Yang, Widyantoro D H et al. An entropy-based adaptive genetic algorithm for learning classification rules. In: Proceedings of IEEE Congress on Evolutionary Computation, Korea, 2001.790~796 被引量:1

共引文献221

同被引文献80

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部