摘要
A spatial orthogonal allocation method is devised for multirobot tasks allocation.A 3D space model is adopted to describe exploration mission;meanwhile spatial orthogonal tentative technology is utilized to update the attractor position for load balance.Heterogeneous interactive cultural hybrid architecture is proposed to solve a robot route planning problem;it utilizes good-point-set to initialize population spaces,redefine novel evolution model and particle evolution ability,and introduce near-neighbor local search strategy in order to enhance search capability.Finally,spatial orthogonal allocation and heterogeneous cultural hybrid algorithm (SOAHCHA) are verified by simulation analysis and MORCS2 planning experiments;those results show that the proposed algorithm is efficient because of its successful performance and balanced allocation.
A spatial orthogonal allocation method is devised for multirobot tasks allocation.A 3D space model is adopted to describe exploration mission;meanwhile spatial orthogonal tentative technology is utilized to update the attractor position for load balance.Heterogeneous interactive cultural hybrid architecture is proposed to solve a robot route planning problem;it utilizes good-point-set to initialize population spaces,redefine novel evolution model and particle evolution ability,and introduce near-neighbor local search strategy in order to enhance search capability.Finally,spatial orthogonal allocation and heterogeneous cultural hybrid algorithm (SOAHCHA) are verified by simulation analysis and MORCS2 planning experiments;those results show that the proposed algorithm is efficient because of its successful performance and balanced allocation.
基金
supported by the National Natural Science Foundation of China (No. 90820302)
the Research Fund for the Doctoral Program of Higher Education (No. 200805330005)
Hunan S & T Funds (No. 06IJY3035)
the Postdoctoral Science Foundation of Central South University