期刊文献+

基于全局性分裂算子的进化K-means算法 被引量:3

Evolutionary K-means algorithm based on global splitting operator
下载PDF
导出
摘要 进化算法可以有效地克服K-means对初始聚类中心敏感的缺陷,提高了聚类性能。在进化K-means聚类算法(F-EAC)的基础上,针对其变异操作——簇分裂算子的随机性与局部性,提出了两个全局性分裂算子。结合最大最小距离的思想,利用待分裂簇的周边簇信息来指导簇分裂初始点的选择,使簇的分裂更有利于全局划分,以进一步提高进化聚类的有效性。实验结果表明,基于全局性分裂算子的算法在类数发现及聚类精度方面均优于F-EAC。 Evolutionary Algorithm(EA) can effectively overcome the drawback that K-means is sensitive to the initial clustering centers,thus enhancing the clustering performance.On the basis of evolutionary K-means clustering algorithm(F-EAC),considering the randomness and locality in the splitting operator as a mutation operation,two improved splitting operators with global information(global splitting operator) were proposed.The idea of max-min distance and the information of peripheral clusters were used to guide the selection of the initial splitting centers,in order to make splitting process more beneficial to global partition,furthermore,to improve the efficiency of the evolutionary clustering.The experimental results show that the improved algorithms based on global splitting operator outperform F-EAC in terms of cluster's number discovering and clustering accuracy.
出处 《计算机应用》 CSCD 北大核心 2012年第11期3005-3008,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60805042) 福建省教育厅科技项目(JA11015)
关键词 K-MEANS 进化算法 变异算子 全局分裂 最大最小距离 K-means Evolutionary Algorithm(EA) mutation operator global splitting max-min distance
  • 相关文献

参考文献12

  • 1Han J W,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007:251-301. 被引量:5
  • 2MAULIK U, BANDYOPADHYAY S. Genetic algorithm-based clustering technique[ J]. Pattern Recognition, 2000, 33(9) : 1455 - 1465. 被引量:1
  • 3BANDYOPADHYAY S, MAULIK U. Genetic clustering for automatic evolution Of clusters and application to image classification [J]. Pattem Recognition, 2002, 35(6) : 1197 - 1208. 被引量:1
  • 4HRUSCHKA E R, CAMPELLO R J G B, de CASTRO L N. Evolving clusters in gene-expression data[ J]. Information Sciences, 2006, 176 (13) : 1898 - 1927. 被引量:1
  • 5ALVES V, CAMPELLO R J G B, HRUSCHKA E R. Towards a fast evolutionary algorithm for clustering[ C]//IEEE Congress on Evolutionary Computation. Washington, DC: IEEE Computer Society, 2006:1776 - 1783. 被引量:1
  • 6NALDI M C, CAMPELLO R J G B HRUSCHKA E R, et al. Efficiency issues of evolutionary K-means[ J]. Applied Soft Computing, 2011, 11(2) : 1938 - 1952. 被引量:1
  • 7GONG MAOGUO, JIAO LICHENG, WANG LING, et al. Density-Sensitive evolutionary clustering[C]// Advances in Knowledge Discovery and Data Mining, LNCS4426. Berlin: Springer, 2007:507 - 514. 被引量:1
  • 8潘晓英,刘芳,焦李成.密度敏感的多智能体进化聚类算法[J].软件学报,2010,21(10):2420-2431. 被引量:15
  • 9公茂果,王爽,马萌,曹宇,焦李成,马文萍.复杂分布数据的二阶段聚类算法[J].软件学报,2011,22(11):2760-2772. 被引量:33
  • 10JAIN A K. Data clustering: 50 years beyond K-means[ J]. Pattern Recognition Letters, 2010, 31 (8) : 651 - 666. 被引量:1

二级参考文献19

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Computing Surveys, 1999,31 (3):264-323. [doi: 10.1145/331499. 331504]. 被引量:1
  • 3Hartigan JA, Wong MA. A k-means clustering algorithm. Applied Statistics, 1979,28(1): 100-108. [doi: 10.2307/2346830]. 被引量:1
  • 4Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognition, 2000,33(9):1455-1465. [doi: 10.1016/S0031-3203(99)00137-5]. 被引量:1
  • 5Sheng WG, Swift S, Zhang LS, Liu XH. A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans. on System, Man Cybernetics-part B: Cybernetics, 2005,35(6): 1156-1167. [doi: 10.1109/TSMCB.2005.850173]. 被引量:1
  • 6Gong MG, Jiao LC, Wang L, Bo LF. Density-Sensitive evolutionary clustering. In: Proc. of the 11th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 2007). Springer-Verlag, 2007. 507-514. [doi: 10.1007/978-3-540-71701-052]. 被引量:1
  • 7Sarafis IA, Trinder PW, Zalzala AMS. NOCEA: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases. Applied Soft Computation, 2007,7(3):668-710. [doi: 10.1016/j.asoc.2006.01.011]. 被引量:1
  • 8Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. on System, Man Cybernetics-part A: System, Humans, 2008,38(1):218-237. [doi: 10.1109/TSMCA.2007.909595]. 被引量:1
  • 9Bandyopadhyay S, Saha S. A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans. on Knowledge and Data Engineering, 2008,20(11): 1441-1457. [doi: 10.1109/TKDE.2008.79]. 被引量:1
  • 10Gong MG, Jiao LC, Bo LF, Wang L, Zhang XR. Image texture classification using a manifold distance based evolutionary clustering method. Optical Engineering, 2008,47(7):077201-1-077201-10. [doi: 10.1117/1.2955785]. 被引量:1

共引文献47

同被引文献32

  • 1牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 2TAN P N,MICHAEL S, VIPIN K.数据挖掘导论[M] .范明,范宏建,译.完整版.北京:人民邮电出版社,2011: 204-213. 被引量:2
  • 3Rui X, Donald WII. Survey of custering algorithms. IEEE Trans. on Neural Networks, 2005, 16(3): 645--678. 被引量:1
  • 4HanJW,KamberM.范明,孟小峰译擞据挖掘:概念与技术第2版.北京:机械工业出版社,2007. 被引量:1
  • 5Anil KJ. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010, 31 (8): 651-666. 被引量:1
  • 6Renato CDA, Boris M. Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering. Pattern Recognition, 2012, 45(3): 1061-1075. 被引量:1
  • 7Renato CDA. Constrained clustering with Minkowski weighted K-Means. 13th IEEE International Symposium on Computational Intelligence and Informatics. 2012. 13-17. 被引量:1
  • 8Renato CDA, Peter K. On initializations for the Minkowski weighted K-Means. Advances in intelligent Data Analysis XI Lecture Notes in Computer Science, 2012, 7619: 45-55. 被引量:1
  • 9Chan EY, et al. An optimization algorithm for clustelg using weighted dissimilarity measures. Pattern Recognition, 2004, 37(5): 943-952. 被引量:1
  • 10Huang JZ, Ng MK, Rong H, Li Z. Automated variable weighting in k-means type clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部