期刊文献+

基于方向约束的对称距离聚类算法

Clustering algorithm based on symmetry distance with direction constraint
下载PDF
导出
摘要 K-means算法是数据挖掘领域研究、应用都非常广泛的一种聚类算法,其各种衍生算法很多,其中包括近年出现的以点对称距离为测度的K-means聚类算法。在点对称距离聚类算法的基础上提出一种新的聚类算法,根据对对称性的分析,为对称性的描述增加方向约束,提高对称距离的描述准确性,以此来提高聚类的准确性。同时,针对对称点成对出现的特点,调整了聚类过程中的收敛策略,以对称点对连线中点计算聚类中心,改善了基于对称距离的聚类算法收敛性能。通过数值仿真比较了所提算法与原有算法的优劣,结果显示该算法在计算复杂度不变的条件下获得了更准确的结果,聚类结果更接近数据的真实分类。 K-means is a well studied and widely used clustering algorithm in data mining. There are many clustering algo-rithms evolved from K-means. For example, the symmetry-based version of the K-means algorithm using the point sym-metry distance as the similarity measure is proposed at recent years. In this paper, a new clustering algorithm based on point symmetry distance clustering algorithm is proposed. The direction constraint is put forward after studying the pro-perties of symmetry to enhance the description of symmetric distance and improve the accuracy of clustering. For the fact that symmetry is the relationship between two points, the strategy of convergence is modified to use the midpoint of the symmetry pair to calculate the cluster centers. The convergence performance of clustering is improved. By numerical simu-lation it shows that the proposed algorithm reaches a more accurate result with the same computational complexity as the existing one.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第20期120-125,共6页 Computer Engineering and Applications
基金 浙江省公益基金项目(No.2013C31031)
关键词 K-MEANS算法 聚类 对称距离 方向约束 K-means algorithm clustering symmetry distance direction constraint
  • 相关文献

参考文献15

  • 1TAN P N,MICHAEL S, VIPIN K.数据挖掘导论[M] .范明,范宏建,译.完整版.北京:人民邮电出版社,2011: 204-213. 被引量:2
  • 2Sergios T,Konstantinos K.模式识别[M].李晶皎,王爱侠,张广渊,译.3版.北京:电子工业出版社,2006:317-318. 被引量:1
  • 3Jain A K.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666. 被引量:1
  • 4Fred A L N,Jain A K.Combining multiple clusterings using evidence accumulation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):835-850. 被引量:1
  • 5Kanungo T,Mount D M,Netanyahu N S,et al.An efficient k-means clustering algorithm:analysis and implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):881-892. 被引量:1
  • 6任培花,王丽珍.不确定域环境下基于DKC值改进的K-means聚类算法[J].计算机科学,2013,40(4):181-184. 被引量:7
  • 7于海涛,贾美娟,王慧强,邵国强.基于人工鱼群的优化K-means聚类算法[J].计算机科学,2012,39(12):60-64. 被引量:23
  • 8王留正,何振峰.基于全局性分裂算子的进化K-means算法[J].计算机应用,2012,32(11):3005-3008. 被引量:3
  • 9Su M C,Chou C H.A modified version of the K-Means algorithm with a distance based on cluster symmetry[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):674-680. 被引量:1
  • 10Chung K L,Lin K S.An efficient line symmetry-based K-means algorithm[J].Pattern Recognition Letters,2006,27(7):765-772. 被引量:1

二级参考文献40

  • 1[1]Jain A K, Dubes R C. Algorithms for clustering. Englewood Cliffs, N. J. Prentice Hall, 1988 被引量:1
  • 2[2]Jam A K,Murty M N,Flynn P J. Data clustering:A survey. ACM Comput. Surv. ,1999,31:264~323 被引量:1
  • 3[3]MacQueen J. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Math. Statist,Prob. ,1967,1:281~297 被引量:1
  • 4[4]Kaufman L,Rousseeuw P J. Finding Groups in Data:An Introducion to Cluster Analysis. New York :John Wiley & Sons, 1990 被引量:1
  • 5Han J W,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007:251-301. 被引量:5
  • 6Eric Backer. Computer-Assisted Reasoning in Cluster Analysis[M]. Prentice Hall, 1995. 被引量:1
  • 7Su M C, et al. Application of Neural Network in Cluster Analysis[R]. 1997 IEEE International Conference,1997.1-6. 被引量:1
  • 8Dan Pelleg. Andrew Moore. Accelerating exact k-means algorithms with geometric reasoning. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining[R]. 1999. 277-281. 被引量:1
  • 9MAULIK U, BANDYOPADHYAY S. Genetic algorithm-based clustering technique[ J]. Pattern Recognition, 2000, 33(9) : 1455 - 1465. 被引量:1
  • 10BANDYOPADHYAY S, MAULIK U. Genetic clustering for automatic evolution Of clusters and application to image classification [J]. Pattem Recognition, 2002, 35(6) : 1197 - 1208. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部