期刊文献+

基于近邻传播的快速搜索聚类算法研究 被引量:2

Fast search clustering algorithm based on affinity propagation
下载PDF
导出
摘要 为了能够快速准确地发现自然分布的、任意形状密度变化的聚类,提出了基于近邻传播的快速扫描算法,该算法利用最近邻居关系的传递特性实现数据集合的完全聚类,简化了传统聚类方法的最近邻居判定和计算,优化了搜索过程,实现了快速聚类分析过程。通过与同类算法的比对验证,结果表明该算法对目标数据集合的任意分布特性有很好的适应能力。 In order to find all clusters which have the characteristics of natural distributions, arbitrary density and shape quickly and accurately, the paper present a new clustering algorithm, that is, the Fast Search Clustering Algo- rithm based on Affinity Propagation. Utilize the transmission characteristics among the nearest neighbors, the algorithm implement the full clustering on target data set. By simplify the computation and judge of the nearest neighbors among the traditional algorithms, and optimize the search process, realize the fast clustering. Compare experiments result with the other related works; find the new algorithm has the strong adaptability to the natural distribution data set.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2012年第5期93-96,共4页 Journal of North China Electric Power University:Natural Science Edition
基金 河北省社会科学基金资助项目(HB12YJ064)
关键词 近邻传播 自然分布 聚类分析 数据挖掘 affinity propagation natural distribution clustering analysis data mining
  • 相关文献

参考文献6

二级参考文献49

  • 1Jain A K, Dubes R C. Algorithms for clustering [M]. Englewood Cliffs, N. J. : Prentice Hall, 1988. 被引量:1
  • 2Jiawei Han, Micheline Kamber. Data mining: concepts and techniques [M]. Morgan Kaufmann Publishers, 2006. 被引量:1
  • 3Duda R O, Hart P E, Stork D G. Pattern classification, 2nd ed [M]. Wiley, 2001. 被引量:1
  • 4Mao J, Jain A K. A self - organizing network for hyperellipsoidal clustering [J ]. IEEE Trans. Neural Networks, 1996, 7 (2): 16-29. 被引量:1
  • 5Cao Yongqiang, Wu Jianhong. Dynamics of projective adaptive resonance theory model: the foundation of PART algorithm [J ]. IEEE Trans. Neural Network, 2004, 15 (2) : 245- 260. 被引量:1
  • 6De Castro L N, Von Zuben F J. An evolutionary immune system network for data clustering [C]. Proceedings of the Sixth Brazilian Symposium on Neural Networks. Rio de Janeiro, 2000. 被引量:1
  • 7Zakai M. General distance criteria [ J ]. IEEE Trans Information Theory, 1964, (1) : 94 - 95. 被引量:1
  • 8Sebe N, Lew M S, Huijsmans D P. Toward improved ranking metrics [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22 ( 10 ) : 1132 - 1143. 被引量:1
  • 9Su Mu - Chun, Chou Chien- Hsing. A modified version of the K-means algorithm with a distance based on cluster symmetry [J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23 (6) : 674 - 680. 被引量:1
  • 10Ling Haibin, Jacobs D W. Shape classification using the inner- distance [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007, 29 (2): 286- 299. 被引量:1

共引文献48

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部