期刊文献+

自适应协同进化多目标进化算法

Adaptive co-evolutionary multi-objective evolutionary algorithm
下载PDF
导出
摘要 为了提高协同进化多目标进化算法的全局收敛性,提出了一种调用协同进化算子的自适应方法。其基本思想是:根据目标函数的变化率自动调用协同进化算子;当种群进化正常时,调用合作算子和吞并算子;当种群进化接近停滞时,调用分裂算子。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明,与常规协同进化多目标进化算法相比,新算法不仅具有良好的分布性,而且全局收敛性有了明显的提高。 In order to improve the global convergence of co-evolutionary multi-objective evolutionary algorithm, an adaptive method to call co-evolution operator is proposed. The basic idea of method is that co-evolution operators are dynamically called according to the change rate of objective function. When the evolution is normal, cooperation operator and merging operator are called, and otherwise division operator is called. The convergence and distribution of improved algorithm are studied by means of numerical experiments, and results show that the new algorithm not only has good distribution, but also global convergence has been significantly improved compared with the conventional co-evolutionary multi-objective evolutionary algorithm.
作者 许峰 吴福芳
出处 《计算机工程与应用》 CSCD 北大核心 2016年第6期26-30,73,共6页 Computer Engineering and Applications
基金 安徽省教育厅自然科学基金项目(No.2012kb236)
关键词 多目标进化算法 协同进化 自适应 收敛性 分布性 multi-objective evolutionary algorithm co-evolution adaptive convergence distribution
  • 相关文献

参考文献18

  • 1Hillis W D.Co-evolution parasites improve simulated evolution as an optimization procedure[C]//Proceedings of 2nd Artificial Life Conference.New York:Addison-Wesley,1991:325-369. 被引量:1
  • 2Potter M A,de Jong K A.A cooperative co-evolutionary approach to function optimization[C]//The Parallel Problem Solving From Nature.Berlin:Spinger-Verlag,1994:249-257. 被引量:1
  • 3Potter M A,de Jong K A.Evolving neural with collaborative species[C]//The Proceedings of the 1995 Summer Computer Simulation Conference,1995:340-345. 被引量:1
  • 4Potter M A,de Jong K A.A co-evolutionary approach to learning sequential decision rules[C]//The Proceedings of the Sixth International Conference on Genetic Algorithms,1995:366-372. 被引量:1
  • 5Potter M A,de Jong K A.Cooperative co-evolution:an architecture for evolving coadapted subcomponents[J].Evolutionary Computation,2000,8(1):1-29. 被引量:1
  • 6Rosin C D,Belew R K.Methods for competitive co-evolution,finding opponents worth beating[C]//Proceedings of6th International Conference on Genetic Algorithms.San Mateo:Morgan Kaufmann,1995:373-380. 被引量:1
  • 7Seredynski F,Zomaya A F.Co-evolution and evolving parallel cellular automata-based scheduling algorithms[C]//Artificial Evolution:5th International Conference on Evolution Artificiality.Heidelberg:Springer-Verlag,2001:362-374. 被引量:1
  • 8曹先彬,罗文坚,王煦法.基于生态种群竞争模型的协同进化[J].软件学报,2001,12(4):556-562. 被引量:66
  • 9胡仕成,徐晓飞,李向阳.项目优化调度的病毒协同进化遗传算法[J].软件学报,2004,15(1):49-57. 被引量:27
  • 10许珂,刘栋.多粒子群协同进化算法[J].计算机工程与应用,2009,45(3):51-54. 被引量:24

二级参考文献67

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部