期刊文献+

基于q-高斯分布的自适应变异粒子群算法 被引量:1

Particle swarm algorithm with adaptive mutation based on q-Gaussian distribution
下载PDF
导出
摘要 针对粒子群算法易陷入局部极值和早熟收敛的缺陷,提出了基于q-高斯分布的自适应变异粒子群算法.采用q-高斯作为变异算子对粒子的全局最优位置进行q-高斯变异,克服了因种群遗失多样性所导致的早熟收敛缺陷,随着种群的进化,非广延熵指数q的自适应调整平衡了算法的全局搜索能力和局部开发能力.测试了4个标准复杂函数和优化BP神经网络参数,结果表明,基于q-高斯分布的自适应变异粒子群算法的优化性能最好,收敛速度快. Aiming at the disadvantages that the particle swarm algorithm is easy to run into the local extremum and premature convergence,a particle swarm algorithm with adaptive mutation based on q-Gaussian distribution was proposed.q-Gaussian was taken as the mutation operator to carry out the q-Gaussian mutation for the global optimal position of particles.Thus,the premature convergence caused by the loss of population diversity is overcome.With the evolution of population,the adaptive adjustment of non-extensive entropic index q balances the global searching ability and local development ability of the algorithm.In addition,four standard complex functions were tested,and the parameters of BP neural network were optimized.The results show that the particle swarm algorithm with adaptive mutation based on q-Gaussian distribution has the best optimization performance and fast convergence speed.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2012年第3期354-360,共7页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(60474069)
关键词 粒子群算法 自适应变异 q-高斯分布 数值优化 神经网络参数优化 种群多样性 全局搜索能力 局部搜索能力 particle swarm algorithm adaptive mutation q-Gaussian distribution numerical optimization neural network parameter optimization population diversity global searching ability local searching ability
  • 相关文献

参考文献20

  • 1王璨,邱长华,杭立杰.基于改进粒子群的航空军械保障调度优化[J].沈阳工业大学学报,2010,32(2):206-211. 被引量:4
  • 2崔宝侠,王宏,段勇.基于改进的二维Otsu法及PSO的火灾图像分割[J].沈阳工业大学学报,2010,32(1):75-78. 被引量:3
  • 3崔宝侠,陈凯,段勇.双进双出磨煤机模糊神经网络建模与仿真[J].沈阳工业大学学报,2009,31(4):432-435. 被引量:4
  • 4Jiao W, Liu G B, Liu D. Elite particle swarm optimi- zation with mutation [ C]//Proceedings of 7th Inter- national Conference on System Simulation and Scien- tific Computing Asia Simulation Conference. Beijing, China,2008 : 800 - 803. 被引量:1
  • 5Shen X J, Wei K P, Wu D M, et al. An dynamic adap- tive dissipative particle swarm optimization with muta- tion operation [ C]//Proceedings of 2007 IEEE Inter- national Conference on Control and Automation. Guangzhou, China,2007 : 3077 - 3080. 被引量:1
  • 6Yang M, Huang H X, Xiao G Z. A novel dynamic particle swarm optimization algorithm based on chao- tic mutation [C ]//Proceedings of WKDD : 2009 Se- cond International Workshop on Knowledge Discovery and Data Mining. Moscow, Russia ,2009:656 - 659. 被引量:1
  • 7Ling S H, Iu H H C, Chart K Y, et al. Hybrid particle swarm optimization with wavelet mutation and its in- dustrial applications [ J ]. IEEE Transactions on Sys- tems, Man and Cybernetics-part B : Cybernetics, 2008, 38(3) :743 -763. 被引量:1
  • 8Song S L, Kong L, Zhang P, et al. Particle swarm op- timization algorithm based on space mutation and its application [C]//Proceedings of ISA 2009 Interna- tional Workshop on Intelligent Systems and Applica- tions. Wuhan, China,2009 : 1 - 4. 被引量:1
  • 9Pant M, Thangaraj R, Abraham A. Particle swarm op- timization using adaptive mutation [ C ]//Proceedings of DEXA 2008 : International Conference on Database and Expert Systems Application. Turin, Italy, 2008 : 519 -523. 被引量:1
  • 10Pant M, Thangaraj R, Singh V P, et al. Particle swarmoptimization using sobol mutation [ C ]//Proceedings of ICETE' 08 First International Conference on Emer- ging Trends in Engineering and Technology. Nagpur, Maharashtra,2008 367 - 372. 被引量:1

二级参考文献28

共引文献8

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部