期刊文献+

一类简约的粒子群算法 被引量:4

A Kind of Compact Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对标准粒子群的早熟和局部粒子群的最优位置信息利用率低的问题,提出一类简约的粒子群算法,该算法包含两种改进的策略:初始阶段有区别的更新粒子速度,减少更新频率,当粒子的速度有利于种群的进化时,那么下一代粒子的速度则保持不变;当粒子位置变化不大时,采用基于正态分布的随机采样搜索策略来改变寻优方式,有效地控制种群多样性,避免了早熟现象的发生.仿真实验表明该算法具有更强的寻优能力和更高的稳定性. In order to avoid premature convergence of PSO ( particle swarm optimization ) and low information utilization of the best positions in the local of PSO, a kind of compact PSO ( CPSO ) algorithm is proposed, in which two strategies are employed: firstly update particle velocity differently in the initial stage, where the velocity can maintain unchanged at the next iteration when it benefits to further improving the fitness. The method not only enhances the local search ability but accelerates particle evolution, then change optimization way with random sampling search strategy based on normal distribution, control the population diversity effectively and avoid premature phenomena. The simulation results show that the algorithm has better probability of finding global optimum and mean best value and can maintain the population diversity in the process of evolution, and it also requires less computation time.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第4期800-803,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划重大项目(2006AA10A301)资助 江苏省高校自然科学研究项目(10KJD510001)资助
关键词 粒子群算法 早熟 简约 正态分布 particle swarm optimization algorithm premature compact normal distribution
  • 相关文献

参考文献4

二级参考文献47

  • 1曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 2潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4常晓萍,秦建华,Yigong LOU.粒子群算法在化工过程优化中的应用[J].石油化工高等学校学报,2007,20(1):90-93. 被引量:3
  • 5Kennedy J, Eberhart R C. Particle swarm optimization: Proc IEEE international conference on neural networks [C]. USA:IEEE press, 1995, 4. 1942--1948. 被引量:1
  • 6Eberhart R C, Kennedy J. A new optimizer using particle swarm theory: Proc. of the sixth international symposium on micro machine and hunan science[C]. Nagoya, Japan: [s. n. ], 1995. 被引量:1
  • 7Eberhart R C, Shi Y. Particle swarm optimization: development, applications and resource [J]. IEEE int. conf . on evolutionary computation, 2001: 81--86. 被引量:1
  • 8Van den Bergh F. An analysis of particle swarm optimizers [D]. Department of computer science, university of pretoria, south Africa, 2002:81--83 被引量:1
  • 9Van den Bergh F, Engel Brecht A P. Effects of swarm size on cooperative particle swarm optimizers. In proceedings of the genetic and evolutionary computation conference (GECCO)[C].USA :San Francisco, 2001. 被引量:1
  • 10Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//IEEE international conference of evolutionary computation, anchorge, Alaska: IEEE press, 1998--05. 被引量:1

共引文献69

同被引文献21

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部