期刊文献+

引入交叉变异机制的全局混沌人工蜂群算法 被引量:2

Global Chaos Artificial Bee Colony Algorithm Introducing Cross Mutation Mechanism
下载PDF
导出
摘要 本文设计了交叉变异机制下的全局混沌人工蜂群算法,借鉴遗传算法引入交叉变异机制与全局最优值进行交叉操作来提高算法的探索和开发能力。为了验证所设计算法的有效性,选择8个基准函数对进行测试,并与基本人工蜂群算法和全局人工蜂群算法进行对比,实验结果显示所设计算法在收敛速度和精度上优于其他两种方法。 This paper designs the global chaotic artificial bee colony algorithm under the cross mutation mechanism. The genetic algorithm is introduced to cross mutation mechanism and global optimal value for cross operation in order to improve the exploration and development ability of the algorithm. In order to verify the validity of the designed algorithm, eight benchmark function pairs are selected and it is compared with the basic artificial bee colony algorithm and the global artificial bee colony algorithm. The experimental results show that the designed algorithm outperforms the other two ways in convergence speed and accuracy.
作者 智慧 ZHI Hui(Xi'an University of Architecture and Technology Huaqing College,Xi'an 710043,China)
出处 《价值工程》 2018年第28期249-251,共3页 Value Engineering
基金 西安建筑科技大学华清学院自然科学专项基金项目 项目编号17KY01
关键词 人工蜂群算法 混沌策略 LOGISTIC映射 交叉变异机制 全局优化 artificial bee colony algorithm chaotic strategy Logistic mapping cross mutation mechanism global optimization
  • 相关文献

参考文献5

二级参考文献60

  • 1钟一文,宁正元,蔡荣英,詹仕华.一种改进的离散粒子群优化算法[J].小型微型计算机系统,2006,27(10):1893-1896. 被引量:20
  • 2Karaboga D. An Idea Based on Honey Bee Swarm for Numeri- cal Optimization [ R ]. Kayseri: Erciyes University, Engineering Faculty, Computer Engineering Department,2005. 被引量:1
  • 3Xie Chunli, Shao Cheng, Zlmo Dandan. Parameters optimizationof least squares support vector machines and its application[ J]. Journal of Computers,2011,6(9):1935- 1941. 被引量:1
  • 4Yu Jieyue, Lin Jian. The ink preset algorithm based on the model optimized by chaotic bee colony[ A]. Proceedings of the 5th International Congress on Image and Signal Processing. E C]. America: IEEE Computer Society, 2012.547 - 551. 被引量:1
  • 5Zhang Likang. An analysis of common search in Chinese of Google the meta library [ J ]. Data Science Journal, 2007, 6 (Supplement) : 813 - 823. 被引量:1
  • 6Vapnik V. The Nature of Statistical l_earning Theory[M] .New York: Springer Science Business Media,2000.10 - 60. 被引量:1
  • 7Keeahi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kemel[J].Neural Computation, 2003, 15(7) : 1667 - 1689. 被引量:1
  • 8Friedrichs F, Igel C. Evolutionary tuning of multiple SVM pa- rameters[ J]. Neurocomputing, 2005,64 (Special) : 107 - 117. 被引量:1
  • 9Zhao Mingyuan, Fu Chong, et al. Feature selection and param- eter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes[ J]. Ex- pert Systems with Applications, 2011,38 ( 5 ) : 5197 - 5204. 被引量:1
  • 10Alwan H B, Ku-Mahamud K R. Solving support vector ma- chine model selection problem using continuous ant colony optimizafion[J]. International Journal of Information Process- ing and Management, 2013,4 (2) : 86 - 97. 被引量:1

共引文献58

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部