期刊文献+

基于压缩感知的数据压缩与检测

Data Compression and Detection Based on Compressive Sensing
下载PDF
导出
摘要 在无线传感器网络(WSN)中,以往都是采用奈奎斯特技术对信号进行采样并重构,而随着信号频率的增加,应用奈奎斯特技术会使成本大幅度的增加,这是人们所不乐见的。针对这一问题,近年来出现一种新的技术即压缩感知技术,它能利用更少的数据和合适的重构方法得到更精确的原始信号。将稀疏贝叶斯学习(SBL)和压缩感知联合起来,形成了一种在有噪声的情况下更好重建可压缩信号的方法,并进一步将这种方法应用在WSN中,可以在误差允许的范围内有效控制测量数据的维数,在保证一定误差的同时还减少了成本,提高了算法的效率。 In wireless sensor networks,signal is sampled and reconstructed using the technology of Nyquist in the past. But it requires a substantial increase in the cost with the growth of the signal frequency,which is that people do not like to see. Recently a new technology is emerged,which is called compressive sensing technology. Compressive sensing can use less data and appropriate reconstruction method to get a more accurate original signal. Put Sparse Bayesian Learning ( SBL) and compressive sensing together to form a better way of re-constructing compressible signal under the noise. This method can effectively control the dimension of measurement data within the range of allowed error in WSN,so you can ensure a certain degree of error while reducing the cost,improving the efficiency of the algorithm.
作者 李燕 王博
出处 《计算机技术与发展》 2014年第3期198-201,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60972041 60972045)
关键词 无线传感网络 压缩感知 贝叶斯模型 信号重构 wireless sensor networks compressive sensing Bayesian model signal reconstruction
  • 相关文献

参考文献12

  • 1Donoho D. Compressed sensing[ J]. IEEE trans on information theory ,2006,52 (4) :4036-4048. 被引量:1
  • 2Tropp J A, Gilbert A C. Signal recovery from random measure- ments via orthogonal matching pursuit [ J ]. IEEE trans on in- formation theory ,2007,53 ( 12 ) :4655-4666. 被引量:1
  • 3邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 4VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004. 被引量:32
  • 5VapinkVN.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000. 被引量:1
  • 6薛建儒,郑南宁,郑朝晖,权炜.基于自适应高斯混合体模型的相控阵雷达TWS跟踪技术[J].电子学报,2003,31(3):433-436. 被引量:4
  • 7Babacan S D, Molina R, Katsaggelos A K. Bayesian compres- sive sensing using Laplace priors [ J ]. IEEE trans on image processing,2010,19( 1 ) :53-63. 被引量:1
  • 8Tipping M. Sparse Bayesian learning and the relevance vector machine [ J ]. Journal of machine learning research, 2001,1 (1) :211-244. 被引量:1
  • 9Figueiredo M, Nowak R, Wrigh S J. Gradient projection for sparse reconsmaetion:Application to compressed sensing and other inverse problems [ J ]. 1EEE transaction on selected top- ics in signal processing, 2007,1 (4) : 586 -597. 被引量:1
  • 10王平波,蔡志明,刘旺锁.混合高斯概率密度模型参数的期望最大化估计[J].声学技术,2007,26(3):498-502. 被引量:21

二级参考文献16

  • 1薛建儒 王娉.基于视觉的地面车辆辅助导航系统[R].西安:西安交通大学人工智能与机器人研究所,2001.. 被引量:1
  • 2Dempster, A. P, Laird, N. M, Rubin, D. B. Maximum likelihood for incomplete data via the EM algorithm.[J] .J.R. Stat. Soc,1977,B, 39:1-38. 被引量:1
  • 3Liu C, Sun D X. Acceleration of EM Algorithm for Mixtures Models using ECME[J]. ASA Proceedings of the Stat. Comp. Session, 1997, 109-114. 被引量:1
  • 4Christophe Biemacki.Initializing EM Using the Properties of its Trajectories in Gaussian Mixtures [J]. Statistics and Computing,2004, 14, 3:267-279. 被引量:1
  • 5Patricia McKenzie, Michael Alder. Initializing the EM Algorithm for use in Gaussian Mixture Modelling [J]. Amsterdam Esevier Science BV, 1994:91-105. 被引量:1
  • 6Biernacki C, Celeux G, Govaert G. Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models[J]. Computational Statistics and Data analysis, 2002. 被引量:1
  • 7Banfield J. D, Raftery A. E. Model-based Gaussian and non-Gaussian clustering [J]. Biometrics, 1993, 49:803-821. 被引量:1
  • 8Fraley C, A.E. Raftery.How many clusters? Which clustering method? -Answers via model-based cluster analysis [J]. The Computer Journal, 1998, 41:578-588. 被引量:1
  • 9D.W.Scott. On optimal and data-based histograms [J]. Biometrika, 1979, 66:605-610. 被引量:1
  • 10Fraley C.Algorithms for model-based Gaussian hierarchical clustering [J].SIAM J.Sci.Computer, 1999, 20:270-281. 被引量:1

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部