期刊文献+

高斯混合密度降解模型在数据流聚类中的应用 被引量:1

Application of Gaussian Mixture Density Decomposition in Data Stream Clustering
下载PDF
导出
摘要 针对数据流具有数据量无限且流速快的特点,将高斯混合密度降解模型应用于数据流聚类问题,在数据流中找出有效的高斯分量,并且合并相等的高斯分量.通过采用真实数据进行实验的结果表明,此方法能够有效解决数据流的聚类问题. The characteristics of data stream are infinite data and quick stream speed. Faced to these problems, Gaussian mixture density decomposition is used to solve data stream clustering problem. The paper finds effective Gaussian components and merges them . The experimental results from real data show that the algorithm is very effective to solve data stream clustering.
出处 《江南大学学报(自然科学版)》 CAS 2007年第6期891-894,共4页 Joural of Jiangnan University (Natural Science Edition) 
关键词 聚类 数据流 高斯混合降解模型 clustering data stream Gaussian mixture density decomposition
  • 相关文献

参考文献9

  • 1HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:45
  • 2Babcock B, Babu S, Datar M, et al. Model and issues in data stream systems [C]// Proc of ACM Sigmod/Sigact Conf on Princ of Data Syst, ACM Sigmod/Sigact Conference. California: [s. n. ], 2002 : 1-30. 被引量:1
  • 3Aggarwal C, Han J, Wang J, et al. A Framework for clustering evolving data streams [C]// Conference on Very Large Data Bases, VLDB conference. Berlin : [ s. n. ], 2003 :312-323. 被引量:1
  • 4岳佳,王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息,2006,22(11X):244-246. 被引量:51
  • 5SONG M, WANG H. Highly efficient incremental estimation of gaussian mixture models for online data stream clustering [C]//Intelligent Computing, Theory And Application Ⅲ, Proceedings of SPIE. Florida: [s. n.],2005:174-183. 被引量:1
  • 6Aggarwal C, HAN J, WANG J, et al. A framework for projected clustering of high dimensional data streams[C]// Conference on Very Large Data Bases, VLDB Conference. Toronto :[s. n. ],2004 : 1-12. 被引量:1
  • 7DANIEL B. Requirements for clustering data streams[J]. SIGKDD Exploartion, 2003, 3 (2) : 23-27. 被引量:1
  • 8朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 9杨小兵..聚类分析中若干关键技术的研究[D].浙江大学,2005:

二级参考文献19

  • 1Golab L,Ozsu MT.Issues in data stream management.SIGMOD Record,2003,32(2):5-14. 被引量:1
  • 2Babcock B,Babu S,Datar M,Motwani R,Widom J.Models and issues in data stream systems.In:Proc.of the 21st ACM SIGMOD-SIGACT-SIGART Symp.on Principles of Database Systems.2002.1-16. 被引量:1
  • 3Barbará D.Requirements for clustering data streams.ACM SIGKDD Explorations Newsletter,2003,3(2):23-27. 被引量:1
  • 4Aggarwal C,Han J,Wang J,Yu PS.A framework for clustering evolving data streams.In:VLDB 2003.2003.81-92. 被引量:1
  • 5Guha S,Mishra N,Motwani R,O'Callaghan L.Clustering data streams.In:FOCS 2000.2000.359-366. 被引量:1
  • 6O'Callaghan L,Mishra N,Meyerson A,Guha S.Streaming-Data algorithms for high-quality clustering.In:ICDE Conf.2002.685-704. 被引量:1
  • 7Zhang T,Ramakrishnan R,Livny M.BIRCH:An efficient data clustering method for very large databases.In:SIGMOD'96.1996.103-114. 被引量:1
  • 8Hah J,Kamber M.Data Mining-Concepts and Techniques.Beijing:Higher Education Press,Morgan Kaufmann Publishers,2001. 被引量:1
  • 9Manku GS,Motwani R.Approximate frequency counts over data streams.In:VLDB 2002.2002.346-357. 被引量:1
  • 10Dempster, A. P, Laird, N. M, Rubin, D. B. Maximum likelihood for incomplete data via the EM algorithm.[J] .J.R. Stat. Soc,1977,B, 39:1-38. 被引量:1

共引文献144

同被引文献8

  • 1宋余庆,谢从华,朱玉全,李存华,陈健美,王立军.基于近似密度函数的医学图像聚类分析研究[J].计算机研究与发展,2006,43(11):1947-1952. 被引量:16
  • 2谢从华,朱峰,王立军,武园园.基于密度聚类的医学图像分割DCMIS[J].计算机应用研究,2007,24(2):167-169. 被引量:6
  • 3谢从华,陆虎,薛万宇,宋余庆.基于动态步长的医学图像聚类分割研究[J].微电子学与计算机,2007,24(4):66-68. 被引量:1
  • 4Wehrens R,Buydens L M C,Fraley C,et al.Model based clustering for image segmentation and large datasets via sampling[J].Journal of Classification,2004(21):231-253. 被引量:1
  • 5Jiang Shaofeng,Chen Wufan,Feng Qianjin,et al.Automatic segmentation of cerebral computerized tomography based on parameter limited Gaussian mixture model[C]∥Proceedings of the IEEE International Conference on Bioinformatics and Biomedical Engineering.[S.l.]:[s.n.],2007:644-647. 被引量:1
  • 6Wang Kejun,Ren Zhen.Enhanced Gaussian mixture models for object recognition using salient image features[C]∥Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation.[S.l.]:[s.n.],2007:1229-1233. 被引量:1
  • 7Dempster A P,Laird N M,Rubin D B.Maximum likelihood from from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society.Series B(Methodological),1977,39(1):1-38. 被引量:1
  • 8Wehrens R,Buydens L M C,Fraley C,et al.Model based clustering for image segmentation and large datasets via sampling[R].Washington:Department of Statistics University of Washington,2003. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部