期刊文献+

基于自适应高斯混合体模型的相控阵雷达TWS跟踪技术 被引量:4

TWS Tracking Techniques Based on Adaptive Gaussian Mixture Model in Phased Array Radar
下载PDF
导出
摘要 本文提出了一种在相控阵雷达回波数据序列中用高斯混合体模型 (GMM)检测与跟踪运动目标的在线算法 .首先 .回波数据中的每一固定位置的历史数据用点过程描述 .然后用GMM逼近此点过程 .GMM参数随新数据的到来不断更新 .接着建立具有自适应特性的背景模型 .将每帧回波数据分割为背景和前景 .对已标记为前景的数据用连通分支进行分类 .求出目标的中心位置、大小、径向运动速度、角速度 .最后用卡尔曼滤波器对运动目标进行跟踪 .试验结果表明 .本文算法对于复杂场景中运动目标的检测与跟踪具有较好的鲁棒性和实时性 .具有较强的实用价值 . An on-line real-time tracking algorithm for radar image sequences is proposed.First,a GMM (Gaussian mixture model) is used to approximate values of a particular pixel of the radar image sequences,and parameters of the GMM are updated each time.Then,we use a simple heuristic to hypothesize which Gaussian of the mixture is most likely to be part of the adaptive background model.After the background model is established,pixel values that don't match the pixel's 'background' Gaussians are grouped using connected components.Features of the targets such as center position,size,radial and angular velocities are also computed in the mean time.Finally,the connected components are tracked across frames using a Kalman filter-based tracker.The experimental result shows that the algorithm is robust in clutter and easy to implement on-line.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第3期433-436,共4页 Acta Electronica Sinica
基金 国家创新研究群体科学基金资助项目 (No .60 0 2 4 30 1 )
关键词 边扫描边跟踪 TWS跟踪技术 高斯混合体 连通分支 卡尔曼滤波器 相控阵雷达 目标检测 track-while-scan Gaussian mixture connected component Kalman filter
  • 相关文献

参考文献2

二级参考文献3

共引文献8

同被引文献30

  • 1岳佳,王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息,2006,22(11X):244-246. 被引量:51
  • 2王平波,蔡志明,刘旺锁.混合高斯概率密度模型参数的期望最大化估计[J].声学技术,2007,26(3):498-502. 被引量:21
  • 3VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 4N Friedman and S Russell. Image Segmentation in Video Sequences: A Probabilistic Approach[ C]. Proc. 13th Conf.Uncertainty in Artificial Intelligence, Aug. 1997. 被引量:1
  • 5Chris Stauffer and W Eric L Grimson Learning Patterns of Activity Using Real - Time Tracking[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : pp:747 - 757. 被引量:1
  • 6P KaewTraKulPong and R Bowden. An Improved Adaptive Background Mixture Model for Real - Time Tracking with Shadow Detection[ C ]. Proc European Workshop Advanced Video Based Surveillance Systems, Sept. 2001. 被引量:1
  • 7Dar - Shyang Lee. Effective Gaussian Mixture Learning for Video Background Subtraction [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005,27 ( 5 ) :827 - 832. 被引量:1
  • 8Masa- aki SATO and Shin ISHII. On -line EM Algorithm for the Normalized Gaussian Network [ J]. Neural Computation, 2002,12:407 - 432. 被引量:1
  • 9R O Duda, P E Hart and D G Stork. Pattern Classification( second Edition) [ A ], China Machine Press, CITIC publish house, 2003. 被引量:1
  • 10Cucch iara R, Grana C, P iccardiM et al. Improving shadow suppression in moving object detection with HSV co lo r information [ AI. In: Proceedings of IEEE Intelligent Transportation Sys2 tems Conference[ C ], Oak land, CA , USA :2001,334 - 339. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部