期刊文献+

一种新的混合高斯模型的学习算法 被引量:2

A Novel Learning Algorithm for Mixture Gaussian Models
下载PDF
导出
摘要 混合高斯模型是背景对消中一种非常有效的方法。本文提出了一种有效的混合高斯模型的学习算法。与以前的方法不同在于:a.根据最大似然准则,在线的更新模型的参数;b.定义了遗忘因子和学习率因子,并根据它们实际的物理含义,得到了更一般的形式。运用这种算法对模拟视频数据和真实视频处理,结果表明,本文提出的学习算法无论在收敛速率,还是在准确性方面,都要优于以前的方法。 Mixture Gaussian model is one of background subtraction methods. An effective and adaptive learning method to update parameters and increase learning rate is proposed in this paper. Comparing to previous work there are two innovations in the new algorithm. First, the parameters can be computed online through the recursive equations according to maximum likelihood rules. Second, forgetting factors and learning rate factors are redefined and their general and simple formulations are obtained by analyzing their practical functions. The new algorithm is applied to simulating data and actual video. The results show that the proposed learning algorithm excels the formers both in converging rate and accuracy.
作者 朱孝政
出处 《航空计算技术》 2006年第4期121-126,共6页 Aeronautical Computing Technique
关键词 混合高斯模型 背景模型 学习算法 mixture gaussian model background model learning algorithm
  • 相关文献

参考文献9

  • 1N Friedman and S Russell. Image Segmentation in Video Sequences: A Probabilistic Approach[ C]. Proc. 13th Conf.Uncertainty in Artificial Intelligence, Aug. 1997. 被引量:1
  • 2Chris Stauffer and W Eric L Grimson Learning Patterns of Activity Using Real - Time Tracking[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : pp:747 - 757. 被引量:1
  • 3刘亚,艾海舟,徐光佑.一种基于背景模型的运动目标检测与跟踪算法[J].信息与控制,2002,31(4):315-319. 被引量:141
  • 4薛建儒,郑南宁,郑朝晖,权炜.基于自适应高斯混合体模型的相控阵雷达TWS跟踪技术[J].电子学报,2003,31(3):433-436. 被引量:4
  • 5P KaewTraKulPong and R Bowden. An Improved Adaptive Background Mixture Model for Real - Time Tracking with Shadow Detection[ C ]. Proc European Workshop Advanced Video Based Surveillance Systems, Sept. 2001. 被引量:1
  • 6Dar - Shyang Lee. Effective Gaussian Mixture Learning for Video Background Subtraction [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005,27 ( 5 ) :827 - 832. 被引量:1
  • 7Masa- aki SATO and Shin ISHII. On -line EM Algorithm for the Normalized Gaussian Network [ J]. Neural Computation, 2002,12:407 - 432. 被引量:1
  • 8R O Duda, P E Hart and D G Stork. Pattern Classification( second Edition) [ A ], China Machine Press, CITIC publish house, 2003. 被引量:1
  • 9Cucch iara R, Grana C, P iccardiM et al. Improving shadow suppression in moving object detection with HSV co lo r information [ AI. In: Proceedings of IEEE Intelligent Transportation Sys2 tems Conference[ C ], Oak land, CA , USA :2001,334 - 339. 被引量:1

二级参考文献12

  • 1薛建儒 王娉.基于视觉的地面车辆辅助导航系统[R].西安:西安交通大学人工智能与机器人研究所,2001.. 被引量:1
  • 2C Wren, A Azarbayejani, T Darrell, A Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Trans. PAMI, 1997,19(7):780~785 被引量:1
  • 3T Olson, F Brill. Moving Object Detection and Event Recognition Algorithms for Smart Cameras. Proc. DARPA Image Understanding Workshop, May 1997 被引量:1
  • 4I Haritaoglu, D Harwood, L S Davis. W4: Rea-Time Surveillance of People and Their Activities. IEEE Trans. PAMI, 2000,22(8):809~830 被引量:1
  • 5C Stauffer, W E L Grimson. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. PAMI, 2000,22(8):747~757 被引量:1
  • 6R T Collins, A J Lipton, T Kanade. A System for Video Surveillance and Monitoring. Proc. Am. Nuclear Soc.(ANS) Eighth Int'l Topical Meeting Robotic and Remote Systems, Apr. 1999 被引量:1
  • 7C Anderson, P Burt, G Can der Wal. Change Detection and Tracking Using Pyramid Transformatin techniques. Proc. SPIE-Intelligent Robots and Computer Vision, 1985,(579):72~78 被引量:1
  • 8J Barron, D Fleet, S Beauchemin. Performance of Optical Flow Techniques", International Journal of Computer Vision, 1994,12(1):42~77 被引量:1
  • 9A M Tekalp. Digital Video Processing. Rochester, NY, 1995 被引量:1
  • 10F Liu, R W Picard. Finding Periodicity in Space and Time. Proc. Int'l Conf. Computer Vision, 1998,376~383 被引量:1

共引文献142

同被引文献12

  • 1陈敏.一种自动识别最优阈值的图像分割方法[J].计算机应用与软件,2006,23(4):85-86. 被引量:31
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 4C. Stauffer, W. E. L. Grimson. Adaptive Background Mixture Models for Real - time Tracking[ C]. In Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Golorado, 1999,2:246- 252. 被引量:1
  • 5Dar- Shyang Lee. Effective Gaussian Mixture Learning for Video Background Subtraction[J]. IEEE Tram Pattern Analysis and Machine Intelligence, 2005,27(5) :827 - 832. 被引量:1
  • 6P KaewTraKulPong, R Bowden. An Improved Adaptive Background Mixture Model for Real- Time Tracking with Shadow Detection[ C]. Proc European Workshop Advanced Video Based Surveillance Systems, 2001,9. 被引量:1
  • 7Hanzi Wang, David Surer. A Re- Evaluation of Mixture- of- Gaussian Background Modeling[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Pennsylvania, USA, March 19 - 23, 2005,1017 - 1020. 被引量:1
  • 8C.Stauffer, W.E.L.Grimson. Adaptive Background Mixture Models for Real-time Tracking[C] In Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins ,Colorado ,1999,2:246 -252. 被引量:1
  • 9Dar-Shyang Lee. Effective Gaussian Mixture Learning for VideoBackground Subtraction[J] . IEEE Trans Pattern Analysis and Machine Intelligence ,2005,27 (5) :827 - 832. 被引量:1
  • 10POWER P W, SCHOONEES J A . Understanding background mixture models for foregrounds segentation[C] //Proceedin gs of Image and Vision Computing.New Zealand:Auckland,2002: 267-271. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部