期刊文献+

一种新的背景预测方法在红外弱小目标检测中的应用 被引量:3

Application of background prediction in infrared weak and small targets detection
下载PDF
导出
摘要 针对空中红外弱小目标的检测,提出了一种新的背景预测方法。该方法对云层边缘区域的点采用亮暗点分类,寻求最相似点的方法进行预测;对非边缘区域的点采用基本背景预测法进行预测;最后经过背景对消和阈值分割,将弱小目标检测出来。实验结果表明,该方法能够提高对起伏背景预测的准确性,减小由于云层边缘预测不准确而引起的虚警,从而能够更加有效地检测到弱小目标。 Proposing a novel method based on background prediction to detect aerial weak and small targets in infrared images. For the points in the area of the cloud's edge, we adopt bright and dim point classification and seek most similar point as predicted point. For the non-edge area, we use basic background prediction method to predict. Then detect weak and small targets through eliminating background and threshold segmentation. The experimental results indicate that the method can enhance the predicted accuracy of the edge of cloud and eliminate false alarm points caused by the edge of cloud. Using this method we can detect weak and small targets from IR images more effectively.
出处 《电子技术应用》 北大核心 2007年第8期72-74,75,共4页 Application of Electronic Technique
关键词 背景预测 红外弱小目标 目标检测 background prediction infrared weak and small targets target detection
  • 相关文献

参考文献6

二级参考文献17

  • 1孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985.. 被引量:48
  • 2Barnett J. Statistical analysis of Median subtraction filtering with application to point targetdetection in infrared backgrounds[A]. SPIE[C], 1989, 1050: 10-18. 被引量:1
  • 3Otazo J J, Tung E W, and Parenti R R. Digital filters for infrared target acquisition sensors[A]. SPIE[C], 1980, 238: 78-90. 被引量:1
  • 4David P, Casasent, Smokelin J, Ye A. Wavelet and Gabor transforms for detection[J]. Optical Engineering, 1992, 31(9): 1893-1898. 被引量:1
  • 5Victor T Tom, Tamar Peli, May Leung. Morphology-based algorithm for point-target detection in infrared backgrounds[A]. SPIE[C], 1993, 1954: 2-11. 被引量:1
  • 6Takken et al. Least-mean-square Filter for IR Sensors[J]. Applied Optics, 1979, 18(24): 4210-4222. 被引量:1
  • 7Mark Burton, Carl Benning. Comparison of imaging infrared detection algorithms. Infrared Technology for Target Detection and Classification[A]. SPIE[C],1981, 302: 26-31. 被引量:1
  • 8B S Denney and R J P de Figueiredo. Optimal Point Target Detection Using Adaptive Auto Regressive Background Prediction. Signal and Data Processing of Small Targets[A]. SPIE[C], 2000, 4048: 46-57. 被引量:1
  • 9闻永,周露,王丹力,等.MATLAB 神经网络应用设计[M].北京:科学出版社,2002. 被引量:1
  • 10Henry Leung,Neville Dubash,Nan Xie.Detection of Small Objects in Clutter Using a GA-RBF Neural Network[J].IEEE Transactions on Aerospace and Electronic Systems, 2002,38(1). 被引量:1

共引文献31

同被引文献37

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部