期刊文献+

结合FCM和SVM的纹理分割算法 被引量:3

Algorithm of texture segmentation combining FCM and SVM
下载PDF
导出
摘要 支持向量机由于其具备的各种优点在图像分割领域得到越来越广泛的应用。但是作为有监督的分类器,它无法自动获取图像中的类别特征。针对这一问题,提出一种结合模糊聚类技术与支持向量机的纹理分割算法,实现了纹理图像的自动分割。在Matlab 7.0平台下进行仿真实验,得到良好效果。实验结果证明该算法能有效地提高纹理图像分割的精度。 Support Vector Machine(SVM) is more and more utilized in the field of image segmentation because of its various virtues.However,as a kind of supervised classifier,SVM can’t automatically extract feature in the image.To solve this problem,a texture segmentation algorithm combing the fuzzy C-means clustering algorithm(FCM) and support vector machine is proposed. Then automatic texture segmentation is carried out.Based on Matlab 7.0,simulation experiment is carried through,and this algorithm has presented its validity in improving segmentation precision.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第33期32-33,36,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2006AA04Z146~~
关键词 模糊聚类 支持向量机 纹理分割 小波变换 fuzzy clustering support vector machine texture segmentation wavelet transform
  • 相关文献

参考文献7

  • 1徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 2潘晨,闫相国,郑崇勋,梁成文.利用单类支持向量机分割血细胞图像[J].西安交通大学学报,2005,39(2):150-153. 被引量:12
  • 3Pan Chen,Yan Xiang-Guo,Zheng Chong-Xun.Fast training of SVM for color-based image segmentation[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics,2004, 6: 3820-3825. 被引量:1
  • 4张国宣 孔锐 施泽生.一种新的结合纹理特征的SVM图像分割方法.中国图象图形学报,2003,8:441-444. 被引量:4
  • 5边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 6VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004. 被引量:32
  • 7HSU CW, LN CJ.A comparison of methods for multi-class Support Vector Machines[J].IEEE Transactions on Neural Networks,2002, 13(2) :415-425. 被引量:1

二级参考文献21

  • 1林瑶,田捷,张晓鹏.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析,2001,6(2):103-108. 被引量:17
  • 2Garbay C. Image structure representation and processing: a discussion of some segmentation methods in cytology[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8(2) : 140-146. 被引量:1
  • 3Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advance and prospects [J]. Pattern Recognition, 2001,34(10): 2 259-2 281. 被引量:1
  • 4Ruberto C D, Dempster A, Khan S, et al. Analysis of infected blood cell images using morphological operators[J]. Image and Vision Computing, 2002, 20(2).-133-146. 被引量:1
  • 5Tax D, Duin R. Data domain description by support vectors [A]. Verleysen M. Proceedings of the European Symposium on Artificial Neural Networks [C].Brussels: Facto D Press, 1999. 被引量:1
  • 6Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (5):603-619. 被引量:1
  • 7Lezoray O, Elmoataz A, Cardot H, et ak Segmentation of color images from serous cytology for automated cell classification[J]. Analytical and Quantitative Cytology and Histology, 2000, 22(4): 311-322. 被引量:1
  • 8Reddick W E, Glass J O, Cook E N, et al. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks [ J ]. IEEE Transactions on Medical Imaging, 1997, 16(6): 911 ~918. 被引量:1
  • 9Vapnik V. The Nature of Statistical Learning Theory [M ]. New York: Springer-Verlag, 1995. 被引量:1
  • 10Burges C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998,2 (2):121 ~ 167. 被引量:1

共引文献65

同被引文献43

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部