期刊文献+

基于信息熵的加权频繁模式树构造算法研究 被引量:3

Weighted Frequent Pattern Tree Structure Algorithm Based on Information Entropy
下载PDF
导出
摘要 关联规则挖掘时,数据集中各项目的重要性不同且较难主观给出,直接影响挖掘结果.针对此问题,给出加权项目集和加权关联规则的概念,并通过信息熵来确定单属性的权重,同时采用几何均值和取最大权重值的折中方法来确定多项目集的权重,以此在兼顾整体权重的同时,突出重要项目.在此基础上,采用加权频繁模式树来提取加权频繁模式,并给出加权频繁模式树的构造方法,最后以国家天文台提供的天体光谱数据及机械装备EDEM数据作为数据集,实验验证算法的高效率. In association rule mining, the importance of items is different and can not be subjectively given, which affects the mining result. The weighted items and weighted association rules are given, in which the weights of single attribute are determined by information entropy and the weights of items are determined by the compromise method between geometric mean and maximum weight value. Thus, the important projects are highlighted and the overall weights are balanced at the same time. On the basis of all above factors, weighted frequent patterns are extracted by using weighted frequent pattern tree, and the structure method of weighted frequent pattern tree is given. Finally, the experimental results on the spectral data of celestial body and the mechanical equipment EDEM verify the high efficiency of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第1期28-34,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.41140027) 山西省青年基金项目(No.2012021015-4) 山西省高校科技创新项目(No.20121011)资助
关键词 关联规则 信息熵 频繁模式 Association Rule, Information Entropy, Frequent Pattern
  • 相关文献

参考文献4

二级参考文献43

  • 1许馨,杨金福,吴福朝,赵永恒.基于广义判别分析的光谱分类[J].光谱学与光谱分析,2006,26(10):1960-1964. 被引量:9
  • 2杨金福,许馨,吴福朝,赵永恒.核覆盖算法在光谱分类问题中的研究[J].光谱学与光谱分析,2007,27(3):602-605. 被引量:7
  • 3张继福,蔡江辉.面向LAMOST的天体光谱离群数据挖掘系统研究[J].光谱学与光谱分析,2007,27(3):606-609. 被引量:6
  • 4Agrawal R. Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases. In: Proc. of 1th Int. Conf. on Management of Data, Washington DC, USA, 1993. 207. 被引量:1
  • 5Han Jiawei. Pei Jian, Yin Yiwen, et al. Data Mining and Knowledge Discovery, 2004, 8(1): 53. 被引量:1
  • 6Pei J ian. Wang Haixun. l.iu J ian. et al. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(11): 1467. 被引量:1
  • 7Gudes Ehud. Shimony Solomon Eyal, Vanetik Natalia. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(11): 1441. 被引量:1
  • 8Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23. 被引量:1
  • 9Kuramochi M,Karypis G.Frequent subgraph discovery//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2001).San Jose,California,USA,2001:313-320. 被引量:1
  • 10Yan X,Han J.gSpan:Graph-based substructure pattern mining//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2002).Maebashi City,Japan,2002:721-724. 被引量:1

共引文献46

同被引文献22

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2徐泉清,朱玉文,刘万春.基于概念格的关联规则算法[J].计算机应用,2005,25(8):1856-1857. 被引量:11
  • 3Oyenesei A. Mining Weighted Association Rules for Fuzzy Quantitative Items[C]// Principles of Data Mining and Knowledge Discovery.Berlin Heidelberg: Springer,2000:416-423. 被引量:1
  • 4WANG Wei,YANG Jiong, YU P S.WAR:Weighted association rides for item intensities[J].Knowledge Information and Systems,2004,6(2):203-229. 被引量:1
  • 5VO B,TRAN N Y, NGO D H.Mining frequent weighted closed itemsets[J].Studies in Con~utafional Intelligence2013,29(5),379-390. 被引量:1
  • 6ZHAI Yue,WANG Lijuan,WANG Ning.Efficient weighted association rule mining using lattice[C]//Controi and Decision Conference (2014 CCDC),The 26th Chinese.Changsha:IEEE,2014:4 913-4 917. 被引量:1
  • 7FENG Tao,MURTAGH F, FARID M.Weighted association rule mining using weighted support and significance framework[C]//Proc.Of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,[S.1.]:ACM Press,2003:661-666. 被引量:1
  • 8ZAKI M J,GOUDA ICFast vertical mining using diffsets[C]//Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, In: Proe. ACM SIGKDD,2003:326-335. 被引量:1
  • 9李成军,杨天奇.一种改进的加权关联规则挖掘方法[J].计算机工程,2010,36(7):55-57. 被引量:22
  • 10王欣欣,张继福,张素兰.一种频繁加权概念格的批处理构造算法[J].模式识别与人工智能,2010,23(5):678-685. 被引量:5

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部