期刊文献+

一种新的加权关联规则模型 被引量:14

A New Weighted Association Rules Model
下载PDF
导出
摘要 关联规则挖掘可以发现大量数据项集之间隐含的关系,在许多领域得到了广泛应用。目前很多关联规则挖掘算法已经被提出,这些算法一般都认为每个数据项的重要性相同。然而在现实中各个项目的重要性往往不同,从决策者角度出发,他们往往会优先考虑利润较高的项目,而忽略利润较低的项目。论文分析了现有加权关联规则文献中存在的问题,提出了一种新的加权关联规则模型,给出了有效挖掘加权频繁项集的MWFI算法。 Mining association rules can find out some potential correlations in large quantity of data and has been applied widely in some fields.Lots of algorithms have been proposed for finding the association rules at present.Most of them treat each item uniformly.However,in real applications,the importance of items is different.Decision-makers are more inclined to items whose profits are higher than others.The shortages of the existing algorithms for mining weighted association rules in some other papers are analyzed,at the same time,a new weighted association rules model and an effective algorithm MWFI to handle the problem of mining weighted frequent itemsets are proposed in this paper.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第5期162-164,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60474022) 河南省自然科学计划资助项目(编号:200510475028)
关键词 加权关联规则 加权支持度 MWFI算法 weighted association rules,weighted support,MWFI algorithm
  • 相关文献

参考文献12

二级参考文献21

  • 1Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.In: Proceedings of the 1994 Intemational Conference on Very Large Databases. Santiago, Chile, 1994:487-499. 被引量:1
  • 2Srikant R, Agrawal R. Mining Quantitative Association Rules in Large Relational tables. ACM SIGMOD Issues, 1996,25(2): 1-12. 被引量:1
  • 3Chan M K, Ada F, Man H W. Mining Fuzzy Association Rules in Database. In: Proceedings of the ACM Sixth International Conferenceon Information and Knowledge Management, l.as Vegas, Neveda,1997:10-14. 被引量:1
  • 4Cai C H,Proc the Int Database Engineering and Applications Symposium,1998年,68~77页 被引量:1
  • 5FAYYAD U,MANNILA H,PIATETSKY-SHAPIRO G.Data Mining and Knowledge Discovery[J].Data Mining and Knowledge Discovery,1997,1(1).5-10. 被引量:1
  • 6CAI CH, ADA WAI-CHEE FU.Mining association rules with weighted items[A].Proceedings of International Database Engineering and Applications Symposium(IDEAS 98)[C].1998. 被引量:1
  • 7TAO F,FIONN M,MOHSEN F.Weighted Association Rule Mining using Weighted Support and Significance Framework[A].Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining[C].2003.661-666. 被引量:1
  • 8WANG W,YANG J,YU PS.Efficient mining of weighted association rules(WAR)[A].Proceedings of the ACM SIGKDD Conference On Knowledge Discovery and Data Mining[C].2000.270-274. 被引量:1
  • 9R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules [C].In:Proceedings of 1994 International Conference of Very Large Databases, Santiago, Chile, 199.4: 487 ~499 被引量:1
  • 10C H Cai,Ada W C Fu,C H Cheng et al.Mining association rules with weighted items[C].In:Procecdings of the International Database Engineering and Applications Symposium,1998:68~77 被引量:1

共引文献133

同被引文献91

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部