期刊文献+

加权关联规则研究及其在个性化推荐系统中的应用 被引量:6

Research of Weighted Association Rule and Its Application in Personalization Recommendation System
下载PDF
导出
摘要 传统的关联规则挖掘没有考虑各项目的重要程度,因此实际过程中缺乏一定的针对性.在New-Apriori算法的加权支持度基础上结合Fp-growth算法思想,提出了基于Fp-树的加权关联规则算法,并给出了关联规则的个性化推荐的一般过程.利用Web日志文件采用网页被用户选择的频率作为权重值,实现了个性化推荐系统的算法.实验结果表明该算法具有较高的准确性和效率. Conventional association rule mining does not consider the importance of each item, so in fact applying it lacks some pertinency. Based on the weighted support of New-Apriori algorithm and combining the Fp-growth algorithm ideas, the weighted association rule algorithm is put forward based on Fp-tree. And the general process of personalization recommendation of the association rule is given. By using Web log file, making use of the Web page frequency which is visited by users as its weight, the algorithm is implemented in the personalization recommendation. The experimental results also show the algorithm has high veracity and efficiency.
出处 《郑州大学学报(理学版)》 CAS 2007年第2期65-69,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 2006年上海市高校优秀青年教师培养基金资助项目
关键词 加权关联规则 New-Apriori算法 加权支持度 加权频繁集 个性化推荐 weighted association rule New-Apriori algorithm weighted support weighted frequent item sets personalization recommendation
  • 相关文献

参考文献10

二级参考文献40

  • 1[1]R Agrwal,R Srikant. Fast algorithms for mining association rules[C].In:Proc of the 20th VLDB conference,1994 被引量:1
  • 2[2]R Cooley,B Mobasher,J Srivastava. Web mining:Inoformation and pattern disvovery on the World Wide Web[C].In:International Conference on Tools with Artificial Intelligence,Newport Beach,CA, 1997:558~567 被引量:1
  • 3[3]Open Market Inc. Open Market Web reporter. http://www. openmarket.com, 1996 被引量:1
  • 4[4]T Bray,J Paoli,C M Sperberg-McQueen. Extensible markup Language (XML)1.0 W3c recommendation[R].Technical report,W3c,1998 被引量:1
  • 5[5]T Joachims,d Freitag,T Mitchell.Webwatcher:A tour guide for the World Wide Web[C].In:Proc of the 15 th Conference on Artificial Intelligence, Nagoya, Japan, 1997: 770~775 被引量:1
  • 6[6]L E Baum,T Petrie. Statistical inference for probabilistic functions of finite state[J].Ann Math Stat, 1996 被引量:1
  • 7[7]R Agrawal. Data mining:Crossing the chasm[R].Invited talk at the 5th ACM SiGKDD Int conference on Knowledge Discovery and Data Mining, 1996 被引量:1
  • 8[8]Ralph Kimball,Richard Merz.The Data Webhouse Toolkit.John Wiley and Sons,Inc.2000 被引量:1
  • 9[9]Thorsten Joachinms. Text categorization with support vector machines:Learning with many relevant features[C].In:European Conference onMachine Leaning(ECML), 1998 被引量:1
  • 10[10]V Vapnik.The nature of Statistical Learning Theory[M].Springer Verlag,New York, 1995 被引量:1

共引文献120

同被引文献74

引证文献6

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部