期刊文献+

基于链表结构的频繁模式树构造

Construction of Frequent Tree Based on Linked List Structure
下载PDF
导出
摘要 FP-Growth算法在关联规则挖掘中是最经典的算法,主要通过频繁模式树(FP树)避免生成候选频繁项目集。针对FP-Growth算法中耗费内存严重的问题,采用链表存储方式,给出了FP-Growth算法的实现方法,其中单个结点采用链表形式来产生,频繁模式树采用左孩子右兄弟的存储结构来组织。在此基础上利用索引表,实现了对频繁模式树中共同前缀结点的快速查找,提高了频繁模式树构造的效率,解决了FP树构造算法中数据存储的瓶颈问题。最后以天体光谱数据和城市土壤数据作为数据集分别对该算法进行测试,实验结果表明,该方法的构造效率要明显优于基于顺序结构的FP-Growth算法。 FP-Growth algorithm is the most typical and the most commonly used construction algorithms of frequent pattern tree(FP-Tree).This article presents a realization method of FP-Growth algorithm based on linked list structure,in which the node of tree is organized by linked list structure,and the frequent pattern tree is stored by using children-brother data structure.On this basis,the quick search for the common and former nodes in the frequent pattern tree by using indexed table becomes true.Accordingly,the time efficiency of the construction of frequent pattern tree is improved,and the bottleneck of data store in the FP-tree construction algorithm is solved.Finally,through the use of the stellar data and urban soil data as the experimental data,the experiment results show that the method is evidently prior to the construction efficiency of the FP-Growth algorithm based on the sequential structure.
作者 马洋 赵旭俊
机构地区 太原科技大学
出处 《太原科技大学学报》 2013年第2期85-90,共6页 Journal of Taiyuan University of Science and Technology
基金 山西省青年基金(2012021015-4) 山西省高校高新技术产业化项目(20121011) 太原科技大学校青年基金(20123020)
关键词 关联规则 频繁模式 链表结构 索引表 光谱数据 association rules frequent pattern linked list structure indexed table spectra data
  • 相关文献

参考文献13

二级参考文献55

  • 1蔡江辉,张继福.基于聚类的离群数据挖掘及应用[J].太原重型机械学院学报,2004,25(4):254-258. 被引量:2
  • 2张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(2):31-38. 被引量:14
  • 3胡学钢,陈慧,张玉红,马冯.基于分布式概念格的分类规则挖掘[J].合肥工业大学学报(自然科学版),2007,30(2):132-136. 被引量:2
  • 4Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23. 被引量:1
  • 5Kuramochi M,Karypis G.Frequent subgraph discovery//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2001).San Jose,California,USA,2001:313-320. 被引量:1
  • 6Yan X,Han J.gSpan:Graph-based substructure pattern mining//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2002).Maebashi City,Japan,2002:721-724. 被引量:1
  • 7Tian Y,Hankins R A,Patel J M.Efficient aggregation for graph summarization//Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD 2008).Vancouver,BC,Canada,2008:567-580. 被引量:1
  • 8Chen Chen,Lin Cindy X,Fredrikson Matt,Christodorescu Mihai,Yan Xifeng,Han Jiawei.Mining graph patterns efficiently via randomized summaries//Proceedings of the VLDB09.Lyon,France,2009:742-753. 被引量:1
  • 9Yan X,Han J.Closegraph:Mining closed frequent graph patterns//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD').New York,NY,USA,2003:286-295. 被引量:1
  • 10Zeng Z,Wang J,Zhang J,Zhou L.FOGGER:An algorithm for graph generator discovery//Proceedings of the 12th Inter-national Conference on Extending Database Technology(EDBT 2009).Saint-Petersburg,Russia,2009:517-528. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部