期刊文献+

极大有序频繁项目集的时间属性分析方法 被引量:3

Analytical Method of Maximum Orderly Frequent Item Sets with Time Attribute
下载PDF
导出
摘要 利用极大团把海量的数据项进行有效的划分,降低了后续数据挖掘和决策选择的复杂度.对于含有时间参量的原始数据,极大团具有一定的时域特性,挖掘其时间特性将进一步提高决策的准确度并可以减少分析数据的规模,降低对计算资源的需求.因此,在提出一种求极大有序频繁项目集算法的基础上,给出一种挖掘极大有序频繁项目集时间属性的方法.在时间并范围内实施搜索极大频繁项目集保证了搜索结果的无遗漏性,并以此为基础,通过定义频繁项目集关键时间段,较好地解释了极大频繁项目集的时间属性;通过实际数据验证了所给出方法的可行性和有效性. A maximum clique based mining algorithm reduces the complexity of information mining and decisions making.For the raw data with time features,discovering these characteristics shall further improve decisional accuracy and reduce request of computing resources.In this paper,we present a method to mine the maximum orderly frequent item sets from timed raw data,which assures that the constructed maximum orderly frequent item sets are complete.Moreover,key time interval of frequent item sets are introduced,and proved that it is a novel way to explain the time attribute of the frequent item sets better.The feasibility and effectiveness are verified through experiments.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第1期120-124,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60873192 61070182)资助 京市教育委员会科技发展计划重点项目(KZ201010009008)资助 山东省高等学校优秀青年教师国内访问学者项目经费资助
关键词 数据挖掘 时序逻辑 极大团 关键时间段 频繁项目集 data mining time series logic maximum clique key time interval frequent item sets
  • 相关文献

参考文献9

二级参考文献72

  • 1Stephan B(o)rzs(o)nyi,Donald Kossmann,Konrad Stocker.The skyline Operator//Proceedings of the 17th International Conference on Data Engineering.Heidelberg,Germany,2001:421-430. 被引量:1
  • 2Chan Chee-Yong,Jagadish H V,Tan Kian-Lee,Tung Anthony K H,Zhang Zhen-Jie.Finding k-dominant Skylines in high dimensional space//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data.Chicago,Illinois,USA,2006:503-514. 被引量:1
  • 3Ronald Fagin,Amnon Lotem,Moni Naor.Optimal Aggregation Algorithms for Middleware.Journal of Computer and System Sciences,2001,66(4):614-656. 被引量:1
  • 4Jan Chomicki,Parke Godfrey,Jarek Gryz,Dongming Liang.Skyline with Presorting//Proceedings of the 19th International Conference on Data Engineering.Bangalore,India,2003:717-816. 被引量:1
  • 5Tan Kian-Lee,Eng Pin-Kwang,Ooi Beng Chin.Efficient progressive skyline computation//Proceedings of the 27th International Conference on Very Large Data Bases.Roma,Italy,2001:301-310. 被引量:1
  • 6Donald Kossmann,Frank Ramsak,Steffen Rost.Shooting stars in the sky:An online algorithm for skyline queries//Proceedings of the 28th International Conference on Very Large Data Bases.Hong Kong,China,2002:275-286. 被引量:1
  • 7Papadias Dimitris,Tao Yufei,Fu Greg,Seeger Bernhard.An optimal and progressive algorithm for skyline queries//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data.San Diego,California,USA,2003:467-478. 被引量:1
  • 8Yiu Man Lung,Mamoulis Nikos.Efficient processing of topk dominating queries on MultiDimensional data//Proceedings of the 33rd International Conference on Very Large Data Bases.Vienna,Austria,2007:483-494. 被引量:1
  • 9Chan Chee-Yong,Jagadish H V,Tung Anthony K H,Zhang Zhen-Jie.On high dimensional Skylines//Proceedings of the 10th International Conference on Extending Database Technology.Munich,Germany,2006:478-495. 被引量:1
  • 10Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23. 被引量:1

共引文献87

同被引文献28

  • 1ALLEN J F.Maintaining knowledge about temporal intervals[J].Communications of the Association for Computing Machinery,1983,26( 11):832-843. 被引量:1
  • 2COMBI C,POZZI G,ROSSATO R.Querying temprol clinical databases on granular trends[J].Journal of Biomedcal Informatics,2012,45(2) :273-291. 被引量:1
  • 3COWLEY W,PLEXOUSAKIS D.A interval algebra for indeterminate time[C]//Proc of the 17th National Conference on Artificial Intelligence.Austin:AAAL,2000:470-475. 被引量:1
  • 4GAO Deng-feng,GENDRANO J A G,MOON B,et al.Main memory-based algorithms for efficient parallel aggregation for temporal databases[J].Distributed and Parallel Databased,2004,16(2):123-163. 被引量:1
  • 5JENSEN C S,SNODGRASS R T,SOO M D.Extending existing dependency theory to temporal databases[J].IEEE Trans on Knowledge and Data Engineering,1996,8(4) :563-582. 被引量:1
  • 6BRUSONI V ,CONSOLE L,TERENZIANI P,et al.Qualitative and quantitative temporal constraints and relational databases:theory,architecture,and applications[J].IEEE Trans on Knowledge and Data Engineering,1999,11(6):948-968. 被引量:1
  • 7汤庸,刘海,郭欢,等.TempDB:时态数据管理系统[J].计算机研究与发展,2010,47(z1):442-445. 被引量:1
  • 8WBITE T.Hadoop:the definitive guide[M].3rd ed.[S.l.]:OReilly Media,Inc,2009:1-16. 被引量:1
  • 9BORTHAKUR D,GRAY J,SARMA J S,et al.Apache Hadoop goes realtime at Facebook[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2011:1071-1080. 被引量:1
  • 10YANG Jin,TANG De-yu,ZHOU Yi.A distributed storage model for EHR based on HBase[C]//Proc of Information Management,Innovation Management and Industrial Engineering.Shenzhen:IEEE Press,2011:369-372. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部