期刊文献+

基于PSO的二阶段光谱模糊聚类研究 被引量:4

Research on Two-Stage Fuzzy Clustering Method for Spectrum Data Based on PSO
下载PDF
导出
摘要 在海量的天体光谱数据中利用无监督聚类学习方法将天体自动分类具有更加诱人的前景。针对当前聚类方法存在的缺点,提出一种高效的高维数据硬划分算法,在此基础上提出了一种分阶段模糊聚类方法。第一阶段,利用硬划分算法对数据聚类,克服了模糊聚类算法对初始值敏感的缺点。第二阶段,以第一阶段运算结果作为初始值,进行模糊聚类的,并将微粒群算法引入模糊聚类,从而保证了聚类结果的全局最优性。实验结果表明,该方法用于天体光谱聚类是可行的、有价值的。 A novel high-dimensional clustering algorithm is proposed. On the basis of this, a two-stage fuzzy clustering approach, named TSPFCM, is presented. On the first stage, data is clustered by a new clustering method. On the second stage, the result of the first stage is taken as the initial cluster centers, and PSO mechanism is inducted into fuzzy clustering to solve the locality and the sensitiveness of the initial condition of Fuzzy C-means Clustering. The running results of the system show that it is feasible and valuable to apply this method to mining the clustering in spectrum data.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第4期1137-1141,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(70573075) 山西省青年基金项目(2008021028)资助
关键词 模糊聚类 微粒群 恒星光谱数据 全局最优 Fuzzy clustering, Particle swarm optimization approach Star optical spectrum data, Global optimization
  • 相关文献

参考文献12

  • 1许馨,杨金福,吴福朝,赵永恒.基于广义判别分析的光谱分类[J].光谱学与光谱分析,2006,26(10):1960-1964. 被引量:9
  • 2杨金福,许馨,吴福朝,赵永恒.核覆盖算法在光谱分类问题中的研究[J].光谱学与光谱分析,2007,27(3):602-605. 被引量:7
  • 3张继福,蔡江辉.面向LAMOST的天体光谱离群数据挖掘系统研究[J].光谱学与光谱分析,2007,27(3):606-609. 被引量:6
  • 4Han J W. Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 被引量:1
  • 5Zhang T, Ramakrishnan R, l.ivny M. Birch: An Efficient Data Clustering Method for Very Large Databases. In: Tagadish H V, Mumick I S. eds. , Proc. of the SIGMOD. Montreal: ACM Press, 1996. 103. 被引量:1
  • 6Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases. In.. Haas L M, Tiwary A, eds. , Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 被引量:1
  • 7Zhang T, Ramakrishnan R, Livny M. BIRCH: An Effeient Data Clustering Method for Very Large Databases. In: Jagadish H V, Mumick I S, eds. , Proe. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1996. 被引量:1
  • 8Hinneburg A, Keim D. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Agrawal R, Stolorz P E, Piatetsky-Shapiro G, eds. , Proc. of the 4th Int'l Conf. on Knowledge Discovery and Data Mining (KDD'98). New York:AAAI Press, 1998. 被引量:1
  • 9Ester M, Kriegel H, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Simoudis E, Han J W, Fayyad U M. eds. , Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining (KDD'96). Portland: AAAI Press, 1996. 被引量:1
  • 10Rakesh A, Johanners G, Dimitrios G, et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Snodgrass R T, Winslett M, eds. , Proc. of the 1994 ACM SIGMOD Int'l Conf. on Management of Data. Minneapolis: ACM Press, 1994. 被引量:1

二级参考文献26

共引文献14

同被引文献15

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部