期刊文献+

基于属性约简的恒星光谱数据分类规则挖掘系统研究

Research on Classification Rules Mining System about Stellar Spectrum Data Based on Attribute Reduction
下载PDF
导出
摘要 知识约简与决策规则的提取是粗糙集理论研究的核心内容。本文针对新加入对象相对于原来的极小决策算法而言是全新的这一情况,提出了一种基于粗糙逻辑的增量式属性约简算法,从而避免每次从庞大的原始决策表开始约简,提高了效率。在此基础上,采用VC^(++)和Oracle9i为开发工具,设计与实现了基于属性约简的恒星光谱数据分类规则挖掘系统,从而为实现恒星光谱数据的自动分类提供了一种有效途径。 Knowledge reduction and the extraction of decision rules are very important in the rough set theory. In this paper, a dynamic algorithm of attribute reduction based on rough logic is presented. The algorithm can avoid reduction from large original decision table when new object is added, and improve the efficiency of attribute reduction. According to this algorithm, the system of classification rules about stellar spectrum data based on attribute reduction is developed through using VC^(++) and Oracle9i. It can afford an effective method to auto-classification of stellar spectrum data.
出处 《计算机科学》 CSCD 北大核心 2004年第10期118-120,130,共4页 Computer Science
基金 国家"八六三"高技术研究发展计划基金(2003AA133060)
关键词 属性约简算法 分类规则 知识约简 粗糙集理论 决策表 VC^++ ORACLE9I 恒星 星光 系统研究 Rough sets,Attribute reduction,Rough logic,Decision rules,Stellar spectrum
  • 相关文献

参考文献3

  • 1Bang W-C, Bien Z. New incremental inductive learning algorithm in the framework of rough set theory. International Journal of Fuzzy Systems, 1999,1 (1): 25-36 被引量:1
  • 2Pawlak Z. Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, 1991 被引量:1
  • 3Bonikowski Z. Algebraic Structures of Rough Sets. In: Ziarko W, ed. Rough Set, Fuzzy Sets and Knowledge Discovery.Springer-Verlay, 1994. 242-247 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部