摘要
分数阶微分方程起源于物理学、人口动力学和经济学等研究领域,是人们理解现实世界数学模型的重要工具.近年来,分数阶微分方程的研究受到数学工作者的广泛关注.利用不动点定理,研究了分数阶微分包含三点边值问题{cDα0+y(t)∈F(t,y(t)),t∈(0,1),α∈(2,3],y(0)=y″(0)=0,βy(η)=y(1),得到了带有三点边值条件的分数阶微分包含解存在的充分条件,所得结果包含非线性项是凸和非凸2种情形.
Differential equations with fractional order have recently proved to be important tools in understanding the modeling of real world,which arise in the research of physics,population dynamics,economics,et al.The study of fractional differential equations have been got much attention by mathematicians.In this paper,based on fixed-point theorem,the following fractional order differential inclusion with three-point boundary value problems is investigated{cD0α+y(t) ∈ F(t,y(t)),t ∈ (0,1),α ∈ (2,3],y(0) =y"(0) =0,βy(η) =y(1).Some new criteria for the sufficient conditions for the existence solutions of the fractional order differential inclusions with three-point boundary value conditions are established.Our results include the cases when the nonlinearity is convex as well as nonconvex valued.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期881-886,共6页
Journal of Sichuan Normal University(Natural Science)
基金
江苏省高校自然科学基金(11KJB110003)资助项目
关键词
解的存在性
分数阶微分包含
边值问题
不动点定理
existence of solutions
fractional differential inclusions
boundary value problems
fixed-point theorem