期刊文献+

分数阶微分包含三点边值问题解的存在性 被引量:3

Existence of Solutions for Fractional-order Differential Inclusion with Tree-point Boundary Value Problems
下载PDF
导出
摘要 分数阶微分方程起源于物理学、人口动力学和经济学等研究领域,是人们理解现实世界数学模型的重要工具.近年来,分数阶微分方程的研究受到数学工作者的广泛关注.利用不动点定理,研究了分数阶微分包含三点边值问题{cDα0+y(t)∈F(t,y(t)),t∈(0,1),α∈(2,3],y(0)=y″(0)=0,βy(η)=y(1),得到了带有三点边值条件的分数阶微分包含解存在的充分条件,所得结果包含非线性项是凸和非凸2种情形. Differential equations with fractional order have recently proved to be important tools in understanding the modeling of real world,which arise in the research of physics,population dynamics,economics,et al.The study of fractional differential equations have been got much attention by mathematicians.In this paper,based on fixed-point theorem,the following fractional order differential inclusion with three-point boundary value problems is investigated{cD0α+y(t) ∈ F(t,y(t)),t ∈ (0,1),α ∈ (2,3],y(0) =y"(0) =0,βy(η) =y(1).Some new criteria for the sufficient conditions for the existence solutions of the fractional order differential inclusions with three-point boundary value conditions are established.Our results include the cases when the nonlinearity is convex as well as nonconvex valued.
作者 杨丹丹
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期881-886,共6页 Journal of Sichuan Normal University(Natural Science)
基金 江苏省高校自然科学基金(11KJB110003)资助项目
关键词 解的存在性 分数阶微分包含 边值问题 不动点定理 existence of solutions fractional differential inclusions boundary value problems fixed-point theorem
  • 相关文献

参考文献16

  • 1Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations [ J ]. Nonlinear Anal,2008,69:2677 -2682. 被引量:1
  • 2Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations North - Hollan Mathemat- ics Studies [ M ]. Amsterdam : Elsevier Science B. V. ,2006. 被引量:1
  • 3Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives,Theory and Applications [ M ]. Yverdon:Gordon and Breach, 1993. 被引量:1
  • 4Wang G T, Ntouyas S K, Zhang L H. Positive solutions of the three - point boundary value problem for fractional - order differen- tial equations with an advanced argument[ J]. Adv Diff Eqns,2011,2 : 1 - 11. 被引量:1
  • 5Belmekki M, Nieto J, Rodriguez - Lopez R. Existence of periodic solution of a nonlinear fractional differential equation [ J ] Bound Value Probl, 2009 (2009) : 1 - 18. 被引量:1
  • 6陈文,孙洪广,李西成著..力学与工程问题的分数阶导数建模[M].北京:科学出版社,2010:260.
  • 7刘洪洁,赵俊芳,耿凤杰,廉海荣.一类分数阶微分方程正解的存在性[J].数学的实践与认识,2012,24(2):241-248. 被引量:7
  • 8王永庆,刘立山.Banach空间中分数阶微分方程m点边值问题的正解[J].数学物理学报(A辑),2012,32(1):246-256. 被引量:25
  • 9Castaining C, Valadier M. Convex analysis and measurable multifunctions [ C]//Lecture Notes in Mathematics. New York: Springer - Verlag, 1977. 被引量:1
  • 10Deimling K. Muhivalued Differential Equations [ M ]. New York : Waiter De Gmyter, 1992. 被引量:1

二级参考文献3

共引文献26

同被引文献25

  • 1Leibenson L S.General problem of the movement of a compressible fluid in a porous medium[J].Izv Akad Nauk SSSR Geogr Geophys,1983,9:7-10. 被引量:1
  • 2Jiang D,Gao W.Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian[J].J Math Anal Appl,2000,252:631-648. 被引量:1
  • 3Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974. 被引量:1
  • 4Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier Science,2006. 被引量:1
  • 5Kilbas A A,Trujillo J J.Differential equations of fractional order:methods,results and problems Ⅱ[J].Appl Anal,2002,81:435-493. 被引量:1
  • 6Bai Z,Lü H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505. 被引量:1
  • 7Zhang S.Positive solution for boundary value problem of nonlinear fractional differential equations[J].Electron J Diff Eqns,2006,36:1-12. 被引量:1
  • 8Agarwal R P,O' Regan D,Stanek S.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J].J Math Anal Appl,2010,371:57-68. 被引量:1
  • 9Yang W.Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions[J].Comput Math Appl,2012,63 (1):288-297. 被引量:1
  • 10Cabada Alberto,Wang G.Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J].J Math Anal Appl 2012,389(1):403-411. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部