期刊文献+

一类有序分数阶差分方程解的存在性 被引量:5

Existence of solution for a class of sequential fractional difference equation
下载PDF
导出
摘要 研究一类带有分数阶边值条件的分数阶差分方程解的存在性与唯一性.首先给出这个问题的解的表达式,然后分析格林函数的一些性质,最后运用锥拉伸与锥压缩不动点定理、压缩映像原理、Krasnosel’skii定理证明了该问题解的存在性和唯一性. The author studies the existence and uniqueness of solution for a class of fractional difference equation with fractional boundary conditions. First a representation for the solution to this problem is given. Then some characteristics of the Green's function are analyzed and the existence and uniqueness of solution are proven by using the fixed point theorems of cone expansion and compression, the contraction mapping theorem, and the Krasnosel'skii theorem.
机构地区 延边大学数学系
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2013年第1期12-16,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11161049)
关键词 分数阶差分方程 三点边值条件 解的存在性 唯一性 fractional difference equation three point boundary value conditions existence ofsolution uniqueness
  • 相关文献

参考文献10

  • 1毋光先,董琪翔,李刚.Banach空间中一类非局部混合积分微分方程[J].扬州大学学报(自然科学版),2011,14(2):27-29. 被引量:6
  • 2ATICI F M, ELOE P W. A transform method in discrete fractional calculus [J]. lnt J Differ Eqs, 2007, 2(2) : 165-176. 被引量:1
  • 3ATICI F M, ELOE P W. Initial value problems in discrete fractional calculus [J]. Proc Amer Math Soc, 2009, 137(a) : 981-989. 被引量:1
  • 4ATICI F M, ELOE P W. Two-point boundary value problems for finite fractional difference equations [J]. J Differ Eqs Appl, 2011, 17(4): 445-456. 被引量:1
  • 5GOODRICH C S. Solutions to a discrete right-focal fractional boundary value problem [J]. lnt J Differ Eqs, 2010, 5(2): 195-216. 被引量:1
  • 6CHEUNG Wingsum, REN Jingli, WONG P J Y. Multiple positive solutions for discrete nonlocal boundary value problems [J]. J Math Anal Appl, 2007, 330(2) : 900-915. 被引量:1
  • 7GOODRICH C S. On a fractional boundary value problem with fractional boundary conditions [J]. Appl Math Lett, 2012, 25(8): 1101-1105. 被引量:1
  • 8GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal condi- tions [[J]. Comnut Math At)ol. 2011. 61(2) : 191-202. 被引量:1
  • 9GOODRICH C S. Continuity of solutions to discrete fractional initial value problems [J]. Comput Math Appl, 2010, 59(11): 3489-3499. 被引量:1
  • 10ATIC1 F M, SENGOL S. Modeling with fractional difference equations [J]. J Math Anal Appl, 2010, 369(1) : 1-9. 被引量:1

二级参考文献14

  • 1PACHPATTE B G. Applications of the Leray-Schauder alternative to some Volterra integral and integrodifferential equations [J]. Indian J Pure Appl Math, 1995, 26(12): 1161-1168. 被引量:1
  • 2DONG Qi-xiang, L1 Gang, ZHANG Jin. Quasilinear nonlocal intergrodiIferential equations in Banach spaces [J]. Electron J Differ Equ, 2008(19) :1-8. 被引量:1
  • 3TIDKE H L. Existence of global solutions to nonlinear mixed Volterra-Fredholm integro--differential equations with nonlocal conditions [J]. Electron J Differ Equ, 2009(55) :1-7. 被引量:1
  • 4BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem [J]. J Math Anal Appl, 1991, 162(2): 494-505. 被引量:1
  • 5XUE Xing-mei. Semilinear nonlocal differential equations with measure of noncompactness in Banach spaces [J]. J Nanjing Univ Math Biquarterly, 2007, 24(2): 264-275. 被引量:1
  • 6XUE Xing-mei. Nonlinear differential equations with nonlocal conditions in Banach spaces [J]. Nonlinear Anal, 2005, 63(4) :575-586. 被引量:1
  • 7DONG Qi-xiang, FAN Zhen-bin, LI Gang. Existence of solutions to nonlocal neutral functional differential and integro-differential equations [J]. Int J Nonlinear Sei, 2008, 5(2) : 140-151. 被引量:1
  • 8DONG Qi-xiang, LI Gang. Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces [J]. Electron J Qual Theory Differ Equ, 2009(47) : 1-13. 被引量:1
  • 9BANAS J. On measures of noncompactness in Banach spaces[J]. Commen Math Univ Carolinae, 1980, 21(1) .. 131-143. 被引量:1
  • 10郭大钧.非线性分析中的半序方法[M].济南:山东科技出版社,2000.. 被引量:84

共引文献5

同被引文献39

  • 1GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonloeal condi- tions [J]. Comput Math Appl, 2011, 61(2): 191-202. 被引量:1
  • 2GOODRICH C S. Continuity of solutions to discrete fractional initial value problems [J]. Comput Math Appl, 2010, 59(11): 3489-3499. 被引量:1
  • 3ATICI F M, SENGUL S. Modeling with fractional difference equations [J]. J Math Anal Appl, 2010, 369(1): 1-9. 被引量:1
  • 4ATICI F M, ELOE P W. Two-point boundary value problems for finite fractional difference equations [J]. J Differ Equ Appl, 2011, 17(4): 445-456. 被引量:1
  • 5HUANG Zhongmin, HOU Chengmin. Solvability of nonlocal fractional boundary valve problems [J]. Discrete Dyn Nat Soc, 2013, 2013: 1-9. 被引量:1
  • 6XIE Zuoshi, JIN Yuanfeng, HOU Chengmin. Multiple solutions for a fractional difference boundary value prob- lem via variational approach [J]. Abstr Appl Anal, 2012, 2012:1-16. 被引量:1
  • 7HOLM M. The theory of discrete fractional calculus: development and application [D]. Lincoln: University of Nebraska, 2011. 被引量:1
  • 8LANK Q. Multiple positive solutions of semilinear differential equations with singularities [J] J London Math Soc, 2001, 63(3): 690-704. 被引量:1
  • 9MA Dexiang, DU Zengji, GE Weigao. Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator [J]. Comput Math Appl, 2005, 50(5/6) : 729-739. 被引量:1
  • 10Goodrich C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].J.Comput.Math.Appl,2011,61(2):191-202. 被引量:1

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部