期刊文献+

一类分数阶脉冲微分包含四点边值问题——解的存在性

The Existence of Solutions for a Class of Fractional-orderImpulsive Differential Inclusion with the Problem of Four-point Boundary Value
下载PDF
导出
摘要 本文利用Bohenblust-Karlin不动点定理结合上下解方法,研究了一类分数阶脉冲微分包含四点边值问题解的存在性,得到了该边值问题至少存在一个解的充分条件. This paper investigatesthe existence of solutions for a class of fractional-order impulsive differential inclusion with four-point boundary value problem.By using the upper and lower solutions method,the sufficient conditions for the existence of the solution are given by using the Bohenblust-Karlin fixed point theorem.
作者 仝荣 胡卫敏 TONG Rong;HU Weimin(School of Mathematics and Statistics,Yili Normal University,Yining,Xinjiang 835000)
出处 《绵阳师范学院学报》 2019年第5期15-24,共10页 Journal of Mianyang Teachers' College
基金 新疆维吾尔自治区高校科研计划重点项目(XJEDU20141040)
关键词 分数阶微分包含 脉冲 边值问题 不动点定理 fra ctional differential inclusion impulse boundary value problem fixed point theorem
  • 相关文献

参考文献10

二级参考文献72

  • 1常永奎,李万同.多值泛函微分方程的存在性和可控性[D].兰州:兰州大学博士研究生学位论文. 被引量:1
  • 2Yong-kui Chang Li-mei Qi.Existence Results for Second-order Impulsive Functional Differential Inclusions[J].Journal of Applied Mathematics and Stoch-astic Analysis,volume 2006,Article ID 28216:1-12. 被引量:1
  • 3Chang Y K,Li W T.Controllability of Second-order Differential and Integro-differential Inclutions in Banach Spaces[J].Journal of Optimization Theory and Applications,2006,129(1):77-87. 被引量:1
  • 4Lasota A,Opial Z.An Application of the Kaktani-Ky-Fan Theorem in the Theory of Ordinary Differential Equations[J].Academie Polonaise des Sciences,Serie des Science Mathematiques,Astronomiques et Physiques,1965,13:781-786. 被引量:1
  • 5K.Deimling.Multivalued Differential Equations[M].De Gruyter,Berlin,1992. 被引量:1
  • 6Bohnenblust H F,Karlin S.On a Theorem of Ville,In Contributions to the Theory of Games[J].Princeton University Press,1950,1:155-160 被引量:1
  • 7Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations [G]//North-Holland Mathematics Studies,vol. 204. Amsterdam: Elsevier Science B. V. ,2006. 被引量:1
  • 8Diethelm K. The analysis of fractional differential equations[G]//Lecture Notes in Mathematics. Braun- schweig : Springer, 2010. 被引量:1
  • 9Tarasov V E. Fractional Dynamics.. Application of Fractional Calculus to Dynamics of Particles, Fields and Media[M]. HEP : Springer, 2010. 被引量:1
  • 10Lakshmikantham V,Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singa- pore/London.. World Scientic, 1989. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部