摘要
研究了非线性项可变号的分数阶微分方程两点边值问题其中f:[0,1]×[0,∞)→(→∞,∞)是连续的,λ>0,q(t)>0_2通过构造适当算子,继而运用锥上的不动点定理,得到了该问题至少一个正解的存在性.
In this paper, we are concerned with a kind of two-point boundary value problem with sign-changing nonlinerity,{Dα0+u(t)+λq(t)f(t,u(t))=0,0〈t〈1,u(0)=u(1)=0,where f:[0,1]×[0,∞)→(-∞,∞)is continuous,λ〉0,q(t)〉0.By using a fixed point theorem in a cone, we obtain the existence of at least one positive solution.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第2期241-248,共8页
Mathematics in Practice and Theory
基金
中央高校基本业务经费资助(2010ZY30
2011YYL079
2011YXL047)
关键词
分数阶微分方程
非线性项可变号
两点
正解
边值问题
Fractional differential equation
sign-changing nonlinerity
two-point
positive solutions
Boundary value problem.