期刊文献+

一类分数阶微分方程正解的存在性 被引量:7

Positive Solutions for Fractional Boundary Value Problem With Sign-Changing Nonlinerity
原文传递
导出
摘要 研究了非线性项可变号的分数阶微分方程两点边值问题其中f:[0,1]×[0,∞)→(→∞,∞)是连续的,λ>0,q(t)>0_2通过构造适当算子,继而运用锥上的不动点定理,得到了该问题至少一个正解的存在性. In this paper, we are concerned with a kind of two-point boundary value problem with sign-changing nonlinerity,{Dα0+u(t)+λq(t)f(t,u(t))=0,0〈t〈1,u(0)=u(1)=0,where f:[0,1]×[0,∞)→(-∞,∞)is continuous,λ〉0,q(t)〉0.By using a fixed point theorem in a cone, we obtain the existence of at least one positive solution.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第2期241-248,共8页 Mathematics in Practice and Theory
基金 中央高校基本业务经费资助(2010ZY30 2011YYL079 2011YXL047)
关键词 分数阶微分方程 非线性项可变号 两点 正解 边值问题 Fractional differential equation sign-changing nonlinerity two-point positive solutions Boundary value problem.
  • 相关文献

参考文献1

共引文献18

同被引文献51

  • 1董彪,吴文权,蒋自国,蒲志林.双向联想记忆神经网络的全局指数稳定性[J].重庆师范大学学报(自然科学版),2007,24(2):39-42. 被引量:7
  • 2张淑琴.分数阶奇异微分方程初值问题正解的存在性[J].数学学报(中文版),2007,50(4):813-822. 被引量:12
  • 3董彪.变时滞细胞神经网络模型的全局指数稳定性[J].四川师范大学学报(自然科学版),2007,30(4):454-457. 被引量:7
  • 4Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations [ J ]. Nonlinear Anal,2008,69:2677 -2682. 被引量:1
  • 5Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations North - Hollan Mathemat- ics Studies [ M ]. Amsterdam : Elsevier Science B. V. ,2006. 被引量:1
  • 6Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives,Theory and Applications [ M ]. Yverdon:Gordon and Breach, 1993. 被引量:1
  • 7Wang G T, Ntouyas S K, Zhang L H. Positive solutions of the three - point boundary value problem for fractional - order differen- tial equations with an advanced argument[ J]. Adv Diff Eqns,2011,2 : 1 - 11. 被引量:1
  • 8Belmekki M, Nieto J, Rodriguez - Lopez R. Existence of periodic solution of a nonlinear fractional differential equation [ J ] Bound Value Probl, 2009 (2009) : 1 - 18. 被引量:1
  • 9Castaining C, Valadier M. Convex analysis and measurable multifunctions [ C]//Lecture Notes in Mathematics. New York: Springer - Verlag, 1977. 被引量:1
  • 10Deimling K. Muhivalued Differential Equations [ M ]. New York : Waiter De Gmyter, 1992. 被引量:1

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部